Skip to main content
Log in

Optimisation of CdTe electrodeposition voltage for development of CdS/CdTe solar cells

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Cite this article


Cadmium telluride (CdTe) thin films have been deposited on glass/conducting glass (FTO) substrates using low-cost two electrode system and aqueous electrodeposition method. The glass/FTO substrates were used to grow the CdTe layers at different deposition voltages. The structural, electrical, optical and morphological properties of the resulting films have been characterized using X-ray diffraction (XRD), Photoelectrochemical (PEC) cell measurements, optical absorption spectroscopy and Scanning Electron Microscopy (SEM). The XRD results indicate that at voltages less than or higher than 1.576 V, crystallinity is poor due to presence of two phases. When CdTe is grown at 1.576 V, the composition is stoichiometric, and the (111) peak has the highest intensity in the XRD diffractogram indicating a high degree of crystallinity. SEM studies showed that all layers had pin-holes and gaps between the grains. These openings seem to be more common in the samples grown at voltages away from the stoichiometric voltage (1.576 V). The linear I–V curves of glass/FTO/CdS/CdTe/Au structures fabricated using stoichiometric CdTe showed efficiency of 10.1 % under AM 1.5 illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  1. A.M.D. Ede, E.J. Morton, P. DeAntonis, Nucl. Instrum. Methods Phys. Res. A 458, 7 (2001)

    Article  Google Scholar 

  2. J. Britt, C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993)

    Article  Google Scholar 

  3. Accessed on 11 Oct 2014

  4. A. Guptaa, A.D. Compaan, Appl. Phys. Lett. 85, 684 (2004)

    Article  Google Scholar 

  5. Y.H. Lee, W.J. Lee, Y.S. Kwon, G.Y. Yeom, J.K. Yoon, Thin Solid Films 341, 172 (1999)

    Article  Google Scholar 

  6. E.W. Jones, V. Barrioz, S.J.C. Irvine, D. Lamb, Thin Solid Films 517, 2226 (2009)

    Article  Google Scholar 

  7. P.J. Dean, G.M. Williams, G. Blackmore, J. Phys. D Appl. Phys. 17, 2291 (1984)

    Article  Google Scholar 

  8. N. Romeo, A. Bosio, A. Romeo, Sol. Energy Mater. Sol. Cells 94, 2 (2010)

    Article  Google Scholar 

  9. I.M. Dharmadasa, A.P. Samantilleke, J. Young, N.B. Chaure, Semicond. Sci. Technol. 17, 1238 (2002)

    Article  Google Scholar 

  10. D. Lincot, Thin Solid Films 487, 40 (2005)

    Article  Google Scholar 

  11. I.M. Dharmadasa, J. Haigh, J. Electrochem. Soc. 153, G47 (2006)

    Article  Google Scholar 

  12. D. Cunningham, M. Rubcich, D. Skinner, Prog. Photovolt. Res. Appl. 10, 159 (2002)

    Article  Google Scholar 

  13. B.M. Basol, J. Appl. Phys. 55, 601 (1984)

    Article  Google Scholar 

  14. S.K. Das, C.G. Morris, Sol. Energy Mater. Sol. Cells. 28, 305 (1993)

    Article  Google Scholar 

  15. J. Baker, S. J. Calif, R. J. Marshall, M. Sadeghi, US Patent 5,478,445 (1995)

  16. S. Dennison, J. Mat. Chem. 4, 41 (1994)

    Article  Google Scholar 

  17. D.G. Diso, G. Muftah, V. Patel, I.M. Dharmadasa, J. Electrochem. Soc. 157, H647 (2010)

    Article  Google Scholar 

  18. G.E.A. Muftah, Research and Development of CuInTe2 and CdTe Based Thin Film Solar Cells. Ph.D. Thesis, Sheffield Hallam University, United Kingdom, (2010)

  19. J.S. Wellings, Electrodeposition of Semiconductors for Applications in Thin Film Solar Cells. Ph.D. Thesis, Sheffield Hallam University, United Kingdom, 2009

  20. S.Y. Yang, J.C. Chou, H.Y. Ueng, Thin Solid Films 518, 4197 (2010)

    Article  Google Scholar 

  21. G. Sasikala, R. Dhanasekaran, C. Subramanian, Thin Solid Films 302, 71 (1997)

    Article  Google Scholar 

  22. I.M. Dharmadasa, Advances in Thin Film Solar Cells, 1st edn. (Pan Stanford Publishing, Singapore, 2013), p. 72

    Google Scholar 

  23. N. Romeo, A. Bosio, A. Romeo, S. Mazzamuto, V. Caniveri, in Proceedings of 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, (2006), pp. 1857

  24. O.K. Echendu, F. Fauzi, A.R. Weerasinghe, I.M. Dharmadasa, Thin Solid Films 556, 529 (2014)

    Article  Google Scholar 

  25. P.M. Amirtharaj, F.H. Pollak, Appl. Phys. Lett. 45, 789 (1984)

    Article  Google Scholar 

  26. S.H. Shin, J. Bajaj, L.A. Moudy, T.D. Cheung, Appl. Phys. Lett. 42, 68 (1983)

    Article  Google Scholar 

Download references


The principal author wishes to acknowledge the financial support given by Kano University of Science and Technology, Wudil—Nigeria. Mr. S. Creasy from Materials and Engineering Research Institute, Sheffield Hallam University, UK was also thanked for SEM measurements. The contributions made by Hussein Salim, Nor Azlian Abdul Manaf and Muhammad Madugu are gratefully appreciated.

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. Fauzi.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diso, D.G., Fauzi, F., Echendu, O.K. et al. Optimisation of CdTe electrodeposition voltage for development of CdS/CdTe solar cells. J Mater Sci: Mater Electron 27, 12464–12472 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: