Skip to main content

Integrated synthesis and surface passivation of ZnO nanoparticles to enhance UV spectrum selectivity

Abstract

A novel, simple and effective surface passivation technique is introduced to enhance UV spectrum selectivity of ZnO nanoparticles (NPs). The technique which exploits an absorbed layer of dimethylformamide, enables the synthesis and surface passivation of ZnO NPs through a single-step process. Pure ZnO NPs and passivated ones were characterized to evaluate the integrity of passivating layer as well as quality of the final product. Morphological examinations were performed using field-emission scanning and transmission electron microscopies. X-ray diffractometry, energy dispersive X-ray and fourier-transform infrared spectroscopies were employed to analyze the phase and chemical composition of the samples. We also compared optical properties of the surface-passivated and pure ZnO NPs. Photoluminescence measurements revealed a peak value for UV emission at 394 nm and one for violet emission at 412 nm for the passivated and pure samples; respectively. A significant enhancement was observed in the spectrum selectivity and absorption efficiency of the passivated ZnO NPs in the UV range. The passivated NPs exhibited high UV-to-visible rejection ratio and UV-blocking capacity which provide a promising candidate for visible-blind UV photodetectors and UV shielding applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Esmaeilpour Ganji, A.M. Bazargan, M. Keyanpour-rad, M.A. Bahrevar, Funct. Mater. Lett. 3, 141 (2010)

    Article  Google Scholar 

  2. 2.

    E.A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998)

    Article  Google Scholar 

  3. 3.

    Y. Zhu, X. Zhang, R. Li, Q. Li, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  4. 4.

    C. Hsu, K. Chen, T. Tsai, T. Hsueh, Sens. Actuator B Chem. 182, 190 (2013)

    Article  Google Scholar 

  5. 5.

    L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, J. Appl. Phys. 104, 113112-1 (2008)

    Google Scholar 

  6. 6.

    H. Zhu, C.X. Shan, B. Yao, B.H. Li, J.Y. Zhang, D.X. Zhao, D.Z. Shen, X.W. Fan, J. Phys. Chem. C 112, 20546 (2008)

    Article  Google Scholar 

  7. 7.

    Z. Shi, Y. Zhang, X. Cui, S. Zhuang, B. Wu, X. Chu, X. Dong, B. Zhang, G. Duab, Phys. Chem. Chem. Phys. 17, 13813 (2015)

    Article  Google Scholar 

  8. 8.

    C.W. Cheng, E.J. Sie, B. Liu, C.H.A. Huan, T.C. Sum, H.D. Sun, H.J. Fan, Appl. Phys. Lett. 96, 071107-1 (2010)

    Google Scholar 

  9. 9.

    L. Qin, C. Shing, S. Sawyer, P.S. Dutta, Opt. Mater. 33, 359 (2011)

    Article  Google Scholar 

  10. 10.

    C. Chen, H. He, Y. Lu, K. Wu, Z. Ye, ACS Appl. Mater. Interfaces 5, 6354 (2013)

    Article  Google Scholar 

  11. 11.

    N. Izu, K. Shimada, T. Akamatsu, T. Itoh, W. Shin, K. Shiraishi, T. Usui, Ceram. Int. 40, 8775 (2014)

    Article  Google Scholar 

  12. 12.

    Q. Liu, L. Jiang, L. Guo, Small 10, 48 (2014)

    Article  Google Scholar 

  13. 13.

    U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  Google Scholar 

  14. 14.

    H.A. Wahab, A.A. Salama, A.A. El-Saeid, O. Nur, M. Willander, I.K. Battisha, Results Phys. 3, 46 (2013)

    Article  Google Scholar 

  15. 15.

    S. Dutta, B.N. Ganguly, J. Nanobiotechnol. 10, 29 (2012)

    Article  Google Scholar 

  16. 16.

    A.M. Awwad, B. Albiss, A.L. Ahmad, Adv. Mater. Lett. 5, 520 (2014)

    Google Scholar 

  17. 17.

    H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, H. Cui, Vacuum 77, 57 (2004)

    Article  Google Scholar 

  18. 18.

    M.E. Abrishami, S.M. Hosseini, E.A. Kakhki, A. Kompany, M. Ghasemifard, Int. J. Nanosci. 9, 19 (2010)

    Article  Google Scholar 

  19. 19.

    A.N. Mallikan, A. Ramachandra Reddy, K. Sowri Babu, K. Venugopal Reddy, Ceram. Int. 40, 12171 (2014)

    Article  Google Scholar 

  20. 20.

    K.M. Wong, Y. Fang, A. Devaux, L. Wen, J. Huang, L. De Cola, Y. Lei, Nanoscale 3, 4830 (2011)

    Article  Google Scholar 

  21. 21.

    Q. Xu, Q. Cheng, J. Zhong, W. Cai, Z. Zhang, Z. Wu, F. Zhang, Nanotechnology 25, 055501 (2014)

    Article  Google Scholar 

  22. 22.

    B. Mallampati, S.V. Nair, H.E. Ruda, U. Philipose, J. Nanopart. Res. 17, 176 (2015)

    Article  Google Scholar 

  23. 23.

    J. Xu, Z. Chen, J.A. Zapien, C. Lee, W. Zhang, Adv. Mater. 26, 5337 (2014)

    Article  Google Scholar 

  24. 24.

    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Sharif.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazargan, A.M., Sharif, F., Mazinani, S. et al. Integrated synthesis and surface passivation of ZnO nanoparticles to enhance UV spectrum selectivity. J Mater Sci: Mater Electron 27, 8221–8226 (2016). https://doi.org/10.1007/s10854-016-4827-4

Download citation

Keywords

  • Surface Passivation
  • Rejection Ratio
  • Al2O3 Coating
  • Deep Level Emission
  • FESEM Observation