Skip to main content
Log in

Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rutile-phased titanium dioxide nanorods (r-TNRs) and rutile-phased titanium dioxide nanoflowers (r-TNFs) were deposited on fluorine-doped tin oxide coated glass by using one step hydrothermal method at a fixed temperature of 150 °C. The hydrothermal treatment was conducted by varying the reaction time at 2, 3, 4, 5, 6, 7 and 8 h. The effect of reaction time on surface morphology, structure property, crystallite size and Raman spectra was investigated. The nanostructure samples were analysed using X-ray diffractometer, field emission-scanning electron microscope, micro-Raman spectroscopy, and energy-dispersive X-ray spectroscopy. The resulting micro-Raman spectra show abnormal behaviour of Raman intensity. The micro-Raman spectra of the nanostructure samples exhibit insignificant changes and shifting of Raman bands with increasing reaction time. This behaviour can be attributed to the shape and surface morphology distribution of r-TNRs/r-TNFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Lukačević, S.K. Gupta, P.K. Jha, D. Kirin, Lattice dynamics and Raman spectrum of rutile TiO2: the role of soft phonon modes in pressure induced phase transition. Mater. Chem. Phys. 137(1), 282–289 (2012)

    Article  Google Scholar 

  2. Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J. Phys. Chem. C 111, 2709–2714 (2007)

    Article  Google Scholar 

  3. Y. Ohno, K. Tomita, Y. Komatsubara, T. Taniguchi, K. Katsumata et al., Pseudo-cube shaped brookite (TiO2) nanocrystals synthesized by an oleate-modified hydrothermal growth method. Cryst. Growth Des. 11(11), 4831–4836 (2015)

    Article  Google Scholar 

  4. M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys.: Condens. Matter 24(19), 195503 (2012)

    Google Scholar 

  5. A.L. Linsebigler, A.L. Linsebigler, J.T. Yates Jr, G. Lu, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)

    Article  Google Scholar 

  6. J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, J. Yang, Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer. Org. Electron. 17, 253–261 (2015)

    Article  Google Scholar 

  7. M. Okuya, K. Shiozaki, N. Horikawa, T. Kosugi, G.R.A. Kumara, J.Á. Madarász, S. Kaneko, G. Pokol, Porous TiO2 thin films prepared by spray pyrolysis deposition (SPD) technique and their application to UV sensors. Solid State Ionics 172(1–4), 527–531 (2004)

    Article  Google Scholar 

  8. Abdul Qader Dawood Faisal, Synthesis and characteristic study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal method. J. Mater. Sci.: Mater. Electron. 26, 317–321 (2015)

    Google Scholar 

  9. H. Yang, S. Zhu, N. Pan, Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J. Appl. Polym. Sci. 92(5), 3201–3210 (2004)

    Article  Google Scholar 

  10. B. Grzmil, B. Kic, M. Rabe, Inhibition of the anatase—rutile phase transformation with K2O, P2O5, Li2O. Chem. Pap. 58, 410–414 (2004)

    Google Scholar 

  11. M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola, S.N. Pandey, A. Agarwal, Effect of annealing temperature on Raman spectra of TiO2 nanoparticles. Chem. Phys. Lett. 555, 182–186 (2013)

    Article  Google Scholar 

  12. E.V.A. Premalal, N. Dematage, S. Kaneko, A. Konno, Preparation of high quality spray-deposited fluorine-doped tin oxide thin films using dilute di(n-butyl)tin(iv) diacetate precursor solutions. Thin Solid Films 520(22), 6813–6817 (2012)

    Article  Google Scholar 

  13. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, Room temperature photoluminescence of anatase and rutile TiO2 powders. J. Lumin. 146, 199–204 (2014)

    Article  Google Scholar 

  14. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl. Surf. Sci. 253(18), 7497–7500 (2007)

    Article  Google Scholar 

  15. P. Liu, W. Cai, M. Fang, Z. Li, H. Zeng, J. Hu, X. Luo, W. Jing, Room temperature synthesized rutile TiO(2) nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology 20(28), 285707 (2009)

    Article  Google Scholar 

  16. H.W. Kim, H.S. Kim, H.G. Na, J.C. Yang, D.Y. Kim, Growth, structural, Raman, and photoluminescence properties of rutile TiO2 nanowires synthesized by the simple thermal treatment. J. Alloys Compd. 504(1), 217–223 (2010)

    Article  Google Scholar 

  17. S.S. Mali, C.A. Betty, P.N. Bhosale, R.S. Devan, Y.-R. Ma, S.S. Kolekar, P.S. Patil, Hydrothermal synthesis of rutile TiO2 nanoflowers using brønsted acidic ionic liquid [BAIL]: synthesis, characterization and growth mechanism. CrystEngComm 14(6), 1920 (2012)

    Article  Google Scholar 

  18. S. Sugapriya, R. Sriram, S. Lakshmi, Effect of annealing on TiO2 nanoparticles. Optik 124(21), 4971–4975 (2013)

    Article  Google Scholar 

  19. M. Gotić, M. Ivanda, S. Popović, S. Musić, A. Sekulić, A. Turković, K. Furić, Raman investigation of nanosized TiO2. J. Raman Spectrosc. 28(7), 555–558 (1997)

    Article  Google Scholar 

  20. X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, J.R. Lombardi, Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement. J. Phys. Chem. C 116(15), 8792–8797 (2012)

    Article  Google Scholar 

  21. S.Y.D.J.R. Balaji, Phonon confinement studies in nanocrystalline anatase–TiO2 thin films by micro Raman spectroscopy. J. Raman Spectrosc. 37, 1416–1422 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Education (MOE) Malaysia (Vot 1213), Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC) and Universiti Tun Hussein Onn Malaysia (UTHM) for financial support using Vot U331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M.K., Mokhtar, S.M., Soon, C.F. et al. Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. J Mater Sci: Mater Electron 27, 7920–7926 (2016). https://doi.org/10.1007/s10854-016-4783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4783-z

Keywords

Navigation