Skip to main content
Log in

Photoacoustic study of alloyed Cd1−xPbxS quantum dots sensitized solar cells electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The optical properties of ternary alloyed Cd1−xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) photoanodes are studied using photoacoustic (PA) technique. Ternary alloyed Cd1−xPbxS QDs were adsorbed onto TiO2 electrodes using successive ionic layer adsorption and reaction technique. The structural properties of the prepared QDs photoanodes have been investigated. X-ray diffraction measurements confirm the formation the cubic crystalline structures of the ternary alloyed Cd1−xPbxS QDs photoanodes. The elemental analysis of the ternary alloyed Cd1−xPbxS QDs were studies using an energy dispersive X-ray spectrometer. The optical properties of the ternary alloyed Cd1−xPbxS QDs photoanodes have been studied with PA technique, UV–visible spectrophotometer and photoluminescence spectrofluorometer. The energy band gap of the prepared ternary QDs alloys decreases from 2.74 to 1.87 eV as x value increases from 0 to 1.0. This red shift in the energy band gap is due to alloying and Pb incorporation. The modified Vegard’s model is used to calculate the bulk values of the energy band gap of alloyed Cd1−xPbxS. Also, the bowing parameter of the ternary alloyed Cd1−xPbxS QDs is determined and equal 0.49 eV. The size of the prepared alloyed QDs are calculated for both CdS QDs (x = 0) and PbS QDs (x = 1) using the effective approximation (EMA) model and found 2.06 and 2.09 nm respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Badawi, N. Al-Hosiny, S. Abdallah, Superlattices Microstruct. 81, 88–96 (2015)

    Article  Google Scholar 

  2. D. Patidar, K.S. Rathore, N.S. Saxena, K. Sharma, T.P. Sharma, Chalcogenide Lett. 5, 21–25 (2008)

    Google Scholar 

  3. D.K. Dwivedi, D. Dayashankar, M. Dubey, J. Ovonic Res. 5, 35–41 (2009)

    Google Scholar 

  4. F. Semendy, G. Jaganathan, N. Dhar, S. Trivedi, I. Bhat, Y. Chen, Adelphi, MD20783-1197 (2008)

  5. P. Guyot-Sionnest, Comptes Rendus Phys. 9, 777–787 (2008)

    Article  Google Scholar 

  6. A. Badawi, J. Mater. Sci.: Mater. Electron. 26, 3450–3457 (2015)

    Google Scholar 

  7. K. Kaur, G.S. Lotey, N.K. Verma, Mater. Chem. Phys. 143, 41–46 (2013)

    Article  Google Scholar 

  8. P.K. Khanna, N. Singh, J. Lumin. 127, 474–482 (2007)

    Article  Google Scholar 

  9. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Sol. Energy 88, 137–143 (2013)

    Article  Google Scholar 

  10. A. Badawi, Superlattices Microstruct. 90, 124–131 (2016)

    Article  Google Scholar 

  11. R.E. Bailey, S. Nie, J. Am. Chem. Soc. 125, 7100–7106 (2003)

    Article  Google Scholar 

  12. M. Protire, P. Reiss, Small 3, 399–403 (2007)

    Article  Google Scholar 

  13. N.P. Gurusinghe, N.N. Hewa-Kasakarage, M. Zamkov, J. Phys. Chem. C 112, 12795–12800 (2008)

    Article  Google Scholar 

  14. Z. El-Qahtani, A. Badawi, K. Easawi, N. Al-Hosiny, S. Abdallah, Mater. Sci. Semicond. Process. 20, 68–73 (2014)

    Article  Google Scholar 

  15. N. Al-Hosiny, S. Abdallah, A. Badawi, K. Easawi, H. Talaat, Mater. Sci. Semicond. Process. 26, 238–243 (2014)

    Article  Google Scholar 

  16. A. Badawi, K. Easawi, N. Al-Hosiny, S. Abdallah, Mater. Sci. Appl. 5, 27–32 (2014)

    Google Scholar 

  17. G. Laukaitis, S. Lindroos, S. Tamulevičius, M. Leskelä, M. Račkaitis, Appl. Surf. Sci. 161, 396–405 (2000)

    Article  Google Scholar 

  18. G.S. Lotey, S. Guleria, J. Mater. Sci.: Mater. Electron. 26, 7715–7718 (2015)

    Google Scholar 

  19. L.A. Swafford, L.A. Weigand, M.J. Bowers, J.R. McBride, J.L. Rapaport, T.L. Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal, J. Am. Chem. Soc. 128, 12299–12306 (2006)

    Article  Google Scholar 

  20. W. Ma, J.M. Luther, H. Zheng, Y. Wu, A.P. Alivisatos, Nano Lett. 9, 1699–1703 (2009)

    Article  Google Scholar 

  21. J. Akhtar, M. Afzaal, M. Banski, A. Podhorodecki, M. Syperek, J. Misiewicz, U. Bangert, S.J.O. Hardman, D.M. Graham, W.R. Flavell, D.J. Binks, S. Gardonio, P. O’Brien, J. Am. Chem. Soc. 133, 5602–5609 (2011)

    Article  Google Scholar 

  22. K. Prabakar, H. Seo, M. Son, H. Kim, Mater. Chem. Phys. 117, 26–28 (2009)

    Article  Google Scholar 

  23. Y. Xie, S.H. Yoo, C. Chen, S.O. Cho, Mater. Sci. Eng., B 177, 106–111 (2012)

    Article  Google Scholar 

  24. Y. Zhang, J. Zhu, X. Yu, J. Wei, L. Hu, S. Dai, Sol. Energy 86, 964–971 (2012)

    Article  Google Scholar 

  25. M.P. Valkonen, S. Lindroos, M. Leskelä, Appl. Surf. Sci. 134, 283–291 (1998)

    Article  Google Scholar 

  26. N.B. Rahna, V. Kalarivalappil, M. Nageri, S.C. Pillai, S.J. Hinder, V. Kumar, B.K. Vijayan, Mater. Sci. Semicond. Process. 42, 303–310 (2016). (Part 3)

    Article  Google Scholar 

  27. Y. Hu, B. Wang, J. Zhang, T. Wang, R. Liu, J. Zhang, X. Wang, H. Wang, Nanoscale Res. Lett. 8, 222 (2013)

    Article  Google Scholar 

  28. C.K. Sheng, W.M.M. Yunus, W.M.Z.W. Yunus, Z.A. Talib, A. Kassim, Phys. B 403, 2634–2638 (2008)

    Article  Google Scholar 

  29. M.A.B. Narreto, H.A. Alwi, Solid State Sci. Technol. 14, 49–55 (2006)

    Google Scholar 

  30. A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 65–69 (1976)

    Article  Google Scholar 

  31. J.C. Yu, L. Wu, J. Lin, P. Li, Q. Li, Chem. Commun. 13, 1552–1553 (2003)

    Article  Google Scholar 

  32. P. Lv, W. Fu, Y. Mu, H. Sun, S. Su, Y. Chen, H. Yao, D. Ding, T. Liu, J. Wang, H. Yang, J. Alloys Compd. 621, 30–34 (2015)

    Article  Google Scholar 

  33. O. Madelung, Semiconductors: Data Handbook, 3rd edn. (Springer, Berlin, 2004), p. 691

    Book  Google Scholar 

  34. S. Abdallah, N. Al-Hosiny, A. Badawi, J. Nanomater. 2012, 6 (2012)

    Article  Google Scholar 

  35. L.V. Maneeshya, V.S. Anitha, P.V. Thomas, K. Joy, J. Mater. Sci.: Mater. Electron. 26, 2947–2954 (2015)

    Google Scholar 

  36. K. Kaur, G.S. Lotey, N.K. Verma, J. Mater. Sci.: Mater. Electron. 25, 311–316 (2013)

    Google Scholar 

  37. B. Pejova, A. Tanusˇevski, I. Grozdanov, J. Solid State Chem. 177, 4785–4799 (2004)

    Article  Google Scholar 

  38. N.M. Al-Hosiny, S. Abdallah, M.A.A. Moussa, A. Badawi, J. Polym. Res. 20, 1–8 (2013)

    Article  Google Scholar 

  39. K.K. Nanda, F.E. Kruis, H. Fissan, S.N. Behera, J. Appl. Phys. 95, 5035–5041 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

I wish to thank Taif University for the financial support. Materials science and engineering center members at Deanship of Scientific Research- Taif University are also thanked for their assistance during this work. Also, I sincerely acknowledge helpful and useful discussion with Prof. Dr. Zein Heiba and Prof. Dr. Najm Al-Hosainy (Physics Professors) at Taif University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A. Photoacoustic study of alloyed Cd1−xPbxS quantum dots sensitized solar cells electrodes. J Mater Sci: Mater Electron 27, 7899–7907 (2016). https://doi.org/10.1007/s10854-016-4781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4781-1

Keywords

Navigation