Skip to main content
Log in

Thermal annealing effects on the optoelectronic characteristics of fully nanowire-based UV detector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on the fabrication of fully nanowires-based photodetectors whose active parts were made of GaN nanowire and the electrodes made of Ag nanowire networks that provide both transparency and flexibility. The comparative investigations of two types of photodetectors in one case GaN nanowires experienced thermal annealing and another did not are performed. Long Ag nanowires were successfully synthesized through microwave-assisted multistep growth and GaN nanowires were grown by chemical vapor deposition. Observing the morphology of GaN nanowires by SEM, the length of most nanowires can reach 10 μm. Via the proper thermal annealing process, the rise and fall time of photo-response of the photodetector has considerable improvement both in air and vacuum. At the bias of 1 V, the dark current of the nanowire-annealed photodetector has reduce to 2.6 × 10−7 Å, which only takes 41.3 % of the dark current of the device without nanowires annealing. The mechanism of the optical response process and the performance of the two devices in different test environment are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Afal, S. Coskun, H.E. Unalan, Appl. Phys. Lett. 102, 043503 (2013)

    Article  Google Scholar 

  2. X.R. Deng, H. Deng, M. Wei, J. Alloys Compd. 563, 99–103 (2013)

    Article  Google Scholar 

  3. H.L. Huang, Y.N. Xie, Z.F. Zhang, F. Zhang, Q. Xu, Z.Y. Wu, Appl. Surf. Sci. 293, 248–254 (2014)

    Article  Google Scholar 

  4. H.Y. Lee, Y.T. Hsu, C.T. Lee, Solid-State Electron. 79, 223–226 (2013)

    Article  Google Scholar 

  5. S.S. Shinde, K.Y. Rajpure, Appl. Surf. Sci. 257, 9595–9599 (2011)

    Article  Google Scholar 

  6. D.Z. Zhang, X.H. Gu, F.Y. Jing, F.L. Gao, J.R. Zhou, S.P. Ruan, J. Alloys Compd. 618, 551–554 (2015)

    Article  Google Scholar 

  7. S.Y. Huang, K.H. Matsubara, J. Cheng, H.P. Li, W. Pan, Appl. Phys. Lett. 103, 141108 (2013)

    Article  Google Scholar 

  8. X.H. Xie, Z.Z. Zhang, B.H. Li, S.P. Wang, M.M. Jiang, C.X. Shan, D.X. Zhao, H.Y. Chen, D.Z. Shen, Appl. Phys. Lett. 102, 231122 (2013)

    Article  Google Scholar 

  9. F. Yi, Q.L. Liao, X.Q. Yan, Z.M. Bai, Z.Z. Wang, X. Chen, Q. Zhang, Y.H. Huang, Y. Zhang, Phys. E 61, 180–184 (2014)

    Article  Google Scholar 

  10. M. Zhang, D.M. Li, J.R. Zhou, W.Y. Chen, S.P. Ruan, J. Alloys Compd. 618, 233–235 (2015)

    Article  Google Scholar 

  11. B.D. Liu, Y. Bando, M. Wang, C. Tang, M. Mitome, D. Golberg, Nanotechnology 20, 185705 (2009)

    Article  Google Scholar 

  12. C.Y. Lu, S.P. Chang, S.J. Chang, T.J. Hsueh, C.L. Hsu, Y.Z. Chiou, I.C. Chen, Semicond. Sci. Technol. 24, 075005 (2009)

    Article  Google Scholar 

  13. E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, H.E. Unalan, Appl. Phys. Lett. 103, 083114 (2013)

    Article  Google Scholar 

  14. Q. Peng, J.S. Jie, C. Xie, L. Wang, X.W. Zhang, D. Wu, Y.Q. Yu, C.Y. Wu, Z. Wang, P. Jiang, Appl. Phys. Lett. 98, 123117 (2011)

    Article  Google Scholar 

  15. T.H. Kim, S.Y. Lee, N.K. Cho, H.K. Seong, H.J. Choi, S.W. Jung, S.K. Lee, Nanotechnology 17, 3394–3399 (2006)

    Article  Google Scholar 

  16. D.B. Li, X.J. Sun, H. Song, Z.M. Li, H. Jiang, Y.R. Chen, G.Q. Miao, B. Shen, Appl. Phys. Lett. 99, 261102 (2011)

    Article  Google Scholar 

  17. W. Gaynor, G.F. Burkhard, M.D. McGehee, P. Peumans, Adv. Mater. 23, 2905–2910 (2011)

    Article  Google Scholar 

  18. A.R. Madaria, A. Kumar, C.W. Zhou, Nanotechnology 22, 245201 (2011)

    Article  Google Scholar 

  19. H. Zhang, A.V. Babichev, G. Jacopin, P. Lavenus, F.H. Julien, A.Yu. Egorov, J. Zhang, T. Pauporté, M. Tchernycheva, J. Appl. Phys. 114, 234505 (2013)

    Article  Google Scholar 

  20. P. Sun, Y.H. Liu, X. Wan, X.Q. Meng, R. Su, S. Yu, J. Mater. Sci. Mater. Electron. 26, 6787–6792 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11275144 and J1210061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianquan Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Meng, X. Thermal annealing effects on the optoelectronic characteristics of fully nanowire-based UV detector. J Mater Sci: Mater Electron 27, 7693–7698 (2016). https://doi.org/10.1007/s10854-016-4755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4755-3

Keywords

Navigation