Skip to main content
Log in

Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work studies the effect of Cu doping on structural, morphological, optical, dielectric and photocatalytic activity of TiO2 nanoparticles. Pure and Cu doped TiO2 nanoparticles were synthesized using sol–gel technique. The powder XRD pattern confirmed that all the samples were polycrystalline of anatase phase and increasing doping concentration reduces average crystallite size. The morphology and particle size were identified using FESEM images. The band gap energy was found to be decreased for increasing concentration of Cu in the reflectance spectrum. The rate of recombination and transition of photo excited electron–hole pairs in the synthesized nanoparticles were recognized by photoluminescence spectrum. A strong frequency dependence of dielectric constants (ε′ and ε″), dielectric loss (tan δ) and ac conductivity (σac) were observed for different dopant levels in the frequency range 10–10 MHz at room temperature. The photocatalytic activity of pure and Cu doped TiO2 nanoparticles were investigated against degradation of reactive red-198 under visible light and the results were compared with commercial TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26, 4920–4935 (2014)

    Article  Google Scholar 

  2. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 7520–7535 (2014)

    Article  Google Scholar 

  3. Z. Li, C. Yao, Y. Yu, Z. Cai, X. Wang, Adv. Mater. 26, 2262–2267 (2014)

    Article  Google Scholar 

  4. A. Fujishima, X.T. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515–582 (2008)

    Article  Google Scholar 

  5. H. Chen, C.E. Nanayakkara, V.H. Grassian, Chem. Rev. 112, 5919–5948 (2012)

    Article  Google Scholar 

  6. S. Sen, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois, D. Chaumont, Thin Solid Films 474, 245–249 (2005)

    Article  Google Scholar 

  7. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114, 9987–10043 (2014)

    Article  Google Scholar 

  8. X.Y. Liu, X.Y. Cheng, S. Wang, K. Zhang, Y.Z. Gu, Phys. Chem. Chem. Phys. 17, 17041–17052 (2015)

    Article  Google Scholar 

  9. X. Chen, P.Y. Yu, S.S. Mao, Science 33, 746–750 (2011)

    Article  Google Scholar 

  10. M. Kang, J. Mol. Catal. A: Chem. 197, 173–183 (2003)

    Article  Google Scholar 

  11. M. Subramanian, S. Vijayalakshmi, S. Venkataraj, R. Jayavel, Thin Solid Films 516, 3776–3782 (2008)

    Article  Google Scholar 

  12. C. Zhao, A. Krall, H. Zhao, Q. Zhang, Y. Li, Int. J. Hydrogen Energy 37, 9967–9976 (2012)

    Article  Google Scholar 

  13. M. Khairy, W. Zakaria, Egyptian. J. Petroleum. 23, 419–426 (2014)

    Google Scholar 

  14. X. Yang, S. Wang, H. Sun, X. Wang, J. Lian, Trans. Nonferrous Met. Soc. China 25, 504–509 (2015)

    Article  Google Scholar 

  15. N. Lock, E.M.L. Jensen, J. Mi, A. Mamakhel, K. Norén, M. Qingbo, B.B. Iversen, Dalton Trans. 42, 9555–9564 (2013)

    Article  Google Scholar 

  16. M. Sahu, P. Biswas, Nanoscale Res. Lett. 6, 441–454 (2011)

    Article  Google Scholar 

  17. T.K. Ghorai, OJPC 1, 28–36 (2011)

    Article  Google Scholar 

  18. B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Appl. Surf. Sci. 254, 2569–2574 (2008)

    Article  Google Scholar 

  19. W. Zhanga, Y. Lia, S. Zhua, F. Wang, Catal. Today 93, 589–594 (2004)

    Article  Google Scholar 

  20. G. Colon, M. Maicu, M.C. Hidalgo, J.A. Navio, Appl. Catal. B Environ. 67, 41–51 (2006)

    Article  Google Scholar 

  21. Z. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem. B 102, 10871–10878 (1998)

    Article  Google Scholar 

  22. H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663–671 (1995)

    Article  Google Scholar 

  23. M.M. Oliveira, D.C. Schnitzler, A.J.G. Zarbin, Chem. Mater. 15, 1903–1909 (2003)

    Article  Google Scholar 

  24. Z. Zang, X. Tang, J. Alloys Compd. 619, 98–101 (2015)

    Article  Google Scholar 

  25. Z. Zang, M. Wen, W. Chen, Y. Zeng, Z. Zu, X. Zeng, X. Tang, Mater. Des. 84, 418–421 (2015)

    Google Scholar 

  26. J.M.G. Amores, V.S. Escribano, G. Busca, V. Lorenzelli, J. Mater. Chem. 4, 65 (1994)

    Article  Google Scholar 

  27. H.Y. Liu, L. Gao. J. Am. Ceram. Soc. 89, 370–373 (2006)

    Article  Google Scholar 

  28. C. Zheng, C. Cao, Z. Ali, J. Hou, J. Mater. Chem. A 2, 16467–16473 (2014)

    Article  Google Scholar 

  29. J.A. Wang, R.L. Ballesteros, T. Lopez, A. Moreno, R. Gomez, O. Novaro, X. Bokhimi, J. Phys. Chem. B 105, 9692–9698 (2001)

    Article  Google Scholar 

  30. H. Xu, H. Li, G. Sun, J. Xia, C. Wu, Z. Ye, Q. Zhang, Chem. Eng. J. 160, 33–41 (2010)

    Article  Google Scholar 

  31. C. Han, M. Pelaez, V. Likodimos, A.G. Kontos, P. Falaras, K. O‘Shea, D.D. Dionysiou, Appl. Catal. B Environ. 107, 77–87 (2011)

    Article  Google Scholar 

  32. J. Yu, Q. Xiang, M. Zhou, Appl. Catal. B Environ. 90, 595–602 (2009)

    Article  Google Scholar 

  33. S. Akin, S. Sönmezoğlu, Metall. Mater. Trans. A 46, 4150 (2015)

    Article  Google Scholar 

  34. K.J. Kim, Y.R. Park, Appl. Phys. Lett. 81, 1420–1422 (2002)

    Article  Google Scholar 

  35. J. Navas, A. Sanchez-Coronilla, T. Aguilar, N.C. Hernandez, D.M. de los Santos, J. Sanchez-Marquez, D. Zorrilla, C. Fernandez-Lorenzo, R. Alcantara, J. Martın-Calleja, Phys. Chem. Chem. Phys. 16, 3835–3845 (2014)

    Article  Google Scholar 

  36. R. Li, G. Dong, G. Chen, New J. Chem. 39, 6854–6863 (2015)

    Article  Google Scholar 

  37. H. Yamashita, Y. Ichihashi, S.G. Zhang, Y. Matrumura, Y. Souma, T. Tatsumi, Appl. Surf. Sci. 122, 305–309 (1997)

    Article  Google Scholar 

  38. J. Liqianga, Q. Yichuna, W. Baiqia, L. Shudana, J. Baojianga, Y. Libina, F. Weia, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006)

    Article  Google Scholar 

  39. B.F. Xin, L.Q. Jing, H.G. Fu, Z.H. Sun, Z.Y. Ren, B.Q. Wang, W.M. Cai, Chem. J. Chin. Univ. 25, 1076 (2004)

    Google Scholar 

  40. S. Hu, F. Li, Z. Fan, C. Chang, Appl. Surf. Sci. 258, 182–188 (2011)

    Article  Google Scholar 

  41. H. Tang, H. Berger, P.E. Schmid, F. Levy, Solid State Commun. 87, 847–850 (1993)

    Article  Google Scholar 

  42. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, 1873), p. 328

  43. K.W. Wagner, Ann. Phys. 40, 817–855 (1913)

    Article  Google Scholar 

  44. D. Xu, K. He, B.-H. Chen, L. Jiao, W. Wu, S. Mu, X. Sun, Y.-T. Yang, J. Mater. Sci.: Mater. Electron. 26, 9831–9836 (2015)

    Google Scholar 

  45. A.S. Hudson, Marconi Rev. 37, 43–48 (1968)

    Google Scholar 

  46. K. Karthik, S. Kesavapandian, N.V. Jaya, Appl. Surf. Sci. 256, 6829–6833 (2010)

    Article  Google Scholar 

  47. C. Anderson, A.J. Bard, J. Phys. Chem. B 101, 2611–2616 (1997)

    Article  Google Scholar 

  48. K. Maex, M.K. Baknalov, D. Shamiryan, F. Lacopi, S.H. Brongersma, Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793–88431 (2003)

    Article  Google Scholar 

  49. M. Okutan, E. Basaran, H.I. Bakan, F. Yakuphanoglu, Phys. B Condens. Matter 364, 300–305 (2005)

    Article  Google Scholar 

  50. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  51. M.H. Farzana, S. Meenakshi, Ind. Eng. Chem. Res. 53, 55–63 (2014)

    Article  Google Scholar 

  52. L. Wang, J. Ge, A. Wang, M. Deng, X. Wang, S. Bai, R. Li, J. Jiang, Q. Zhang, Y. Luo, Y. Xiong, Angew. Chem. Int. Ed. 53, 5307–5311 (2014)

    Google Scholar 

  53. D.M. Tobaldi, N. Rozman, M. Leoni, M.P. Seabra, A.S. Škapin, R.C. Pullar, J.A. Labrincha, J. Phys. Chem. C 119, 23658–23668 (2015)

    Article  Google Scholar 

  54. F. Zhang, Z. Cheng, L. Kang, L. Cui, W. Liu, X. Xu, G. Houa, H. Yang, RSC Adv. 5, 32088–32091 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The author S. Boobas thanks to Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu for FESEM and Department of Physics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu for UV-DRS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varadharajan Krishnakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnakumar, V., Boobas, S., Jayaprakash, J. et al. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. J Mater Sci: Mater Electron 27, 7438–7447 (2016). https://doi.org/10.1007/s10854-016-4720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4720-1

Keywords

Navigation