Skip to main content

Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment

Abstract

Organic solar cells based on P3HT:PCBM bulk heterojunction were prepared and subjected to post annealing at different temperatures (100, 120, 140, 160 and 180 °C). SEM, AFM as well as optical images have revealed that post deposition heat treatment has induced significant phase segregation between P3HT and PCBM which were found to result in growth of PCBM clusters on the films surface. The P3HT:PCBM absorption spectra were found to be blue shifted by 7 nm in films subjected to heat treatment at 160 °C and 180 °C. XRD data show a single diffraction peak at 2θ = 5.33 ± 0.23o for P3HT:PCBM films and was attributed to the edge-on arrangement of the (100) plane. Space charge limited conduction theory was employed to determine the charge carrier mobility; the highest obtained mobility was obtained for devices with active layers heat-treated at 140 °C. The change in the barrier height was derived from dark I–V. The variation in the metal–semiconductor contact between the Al electrode and P3HT:PCBM active layer were addressed and the barrier height has increased to form hole blocking contact and the ideality factor has decreased implying a decrease in the recombination rate. A direct relation between Fermi level, Vbi, and Voc was studied. Efficient device performance was ascribed to P3HT:PCBM layers which were subjected to post deposition heat treatment at 140 °C with PCE = 5.5 %, FF = 65.6 %, Jsc = 12.9 mA cm−2 and Voc = 0.65 V.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    H.-L. Huang, C.-T. Lee, H.-Y. Lee, Performance improvement mechanisms of P3HT: PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers. Org. Electron. 21, 126–131 (2015)

    Article  Google Scholar 

  2. 2.

    T. Kirchartz, W. Gong, S.A. Hawks, T. Agostinelli, R.C. MacKenzie, Y. Yang, J. Nelson, Sensitivity of the Mott–Schottky Analysis in Organic Solar Cells. J. Phys. Chem. C116, 7672–7680 (2012)

    Google Scholar 

  3. 3.

    M.S. Ryu, J.C. Hyuk, J. Jin, Effects of thermal annealing of polymer: fullerene photovoltaic solar cells for high efficiency. Curr. Appl. Phys. 10(2), S206–S209 (2010)

    Article  Google Scholar 

  4. 4.

    A.J. Moulé, K. Meerholz, Controlling morphology in polymer–fullerene mixtures. Adv. Mater. 20(2), 240–245 (2008)

    Article  Google Scholar 

  5. 5.

    K. Kim et al., Roles of donor and acceptor nano-domains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 90(16), 163511 (2007)

    Article  Google Scholar 

  6. 6.

    B. Kadem, W. Cranton, A. Hassan, Metal salt modified PEDOT: PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Org. Electron. 24, 73–79 (2015)

    Article  Google Scholar 

  7. 7.

    V.D. Mihailetchi, H.X. Xie, B. de Boer, L.J.A. Koster, P.W.M. Blom, Charge transport and photocurrent generation in poly (3-hexylthiophene): methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 16, 699–708 (2006)

    Article  Google Scholar 

  8. 8.

    J. Hwang, A. Wan, A. Kahn, Energetics of metal–organic interfaces: New experiments and assessment of the field. Mater. Sci. Eng. R 64, 1–31 (2009)

    Article  Google Scholar 

  9. 9.

    S.M. Sze, K.K. Ng, Physics of semiconductor devices (Wiley, New York, 2007)

    Google Scholar 

  10. 10.

    O. Oklobia, T.S. Shafai, A quantitative study of the formation of PCBM clusters upon thermal annealing of P3HT/PCBM bulk heterojunction solar cell. Sol. Energy Mater. Sol. Cells 117, 1–8 (2013)

    Article  Google Scholar 

  11. 11.

    F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13(1), 85–88 (2003)

    Article  Google Scholar 

  12. 12.

    G.T. Yue, J.H. Wu, Y.M. Xiao, H.F. Ye, J.M. Lin, M.L. Huang, Flexible dye-sensitized solar cell based on PCBM/P3HT hetrojunction. Chin. Sci. Bull. 56(3), 325–330 (2011)

    Article  Google Scholar 

  13. 13.

    P.J. Brown, D.S. Thomas, A. Kohler, J.S. Wilson, J.S. Kim, C.M. Ramsdale, H. Sirringhaus, R.H. Friend, Effect of interchain interactions on the absorption and emission of poly.3-hexylthiophene. Phys. Rev. B 67, 064203 (2013)

    Article  Google Scholar 

  14. 14.

    M. Manceau et al., Effects of long-term UV–visible light irradiation in the absence of oxygen on P3HT and P3HT: PCBM blend. Sol. Energy Mater. Sol. Cells 94(10), 1572–1577 (2010)

    Article  Google Scholar 

  15. 15.

    R. Ramani, S. Alam, A comparative study on the influence of alkyl thiols on the structural transformations in P3HT/PCBM and P3OT/PCBM blends. Polymer 54(25), 6785–6792 (2013)

    Article  Google Scholar 

  16. 16.

    T. Erb, U. Zhokhavets, H. Hoppe, G. Gobsch, M. Al-Ibrahim, O. Ambacher, Thinsolid films, absorption and crystallinity of poly(3-hexylthiophene)/fullerene blends in dependence on annealing temperature. Thin Solid Films 511, 483–485 (2006)

    Article  Google Scholar 

  17. 17.

    M. Al-Ibrahim, O. Ambacher, Effects of solvent and annealing on the improved performance of solar cells based on poly.3-hexylthiophene: fullerene. Appl. Phys. Lett. 86, 201120 (2005)

    Article  Google Scholar 

  18. 18.

    Y. Sun, J.-g. Liu, Y. Ding, Y.-c. Han, Controlling the surface composition of P3HT/PCBM blend films by using miced solvents with different evaporation rates. Chin. J. Polym. Sci. 31(7), 1029–1037 (2013)

    Article  Google Scholar 

  19. 19.

    Y.S. Kim, Y. Lee, J.K. Kim, E.O. Seo, E.W. Lee, W. Lee, S.H. Han, S.H. Lee, Effect of solvents on the performance and morphology of polymer photovoltaic devices. Curr. Appl. Phys. 10, 985–989 (2010)

    Article  Google Scholar 

  20. 20.

    S.-Y. Chuang, H.-L. Chen, W.-H. Lee, Y.-C. Huang, S. Wei-Fang, W.-M. Jen, C.-W. Chen, Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells. J. Mater. Chem. 19, 5554–5560 (2009)

    Article  Google Scholar 

  21. 21.

    U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch, N.S. Sariciftci, Effect of annealing of poly (3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films 496, 679–682 (2006)

    Article  Google Scholar 

  22. 22.

    F. Reisdorffer, O. Haas, P. Le Rendu, T.P. Nguyen, Co-solvent effects on the morphology of P3HT:PCBM thin films. Synth. Met. 161, 2544–2548 (2012)

    Article  Google Scholar 

  23. 23.

    H. Zhang, X. Meifeng, R. Cui, X. Guo, S. Yang, L. Liao, Yu. Quanjie Jia, J.D. Chen, B. Sun, Enhanced performance of inverted organic photovoltaic cells using CNTs–TiOX nanocomposites as electron injection layer. Nanotechnology 24, 355401 (2013)

    Article  Google Scholar 

  24. 24.

    A. Swinnen, I. Haeldermans, M. vande Ven, J. D’Haen, G. Vanhoyland, S. Aresu, M. D’Olieslaeger, J. Manca, Tuning the Dimensions of C60-Based Needlelike Crystals in Blended Thin Films. Adv. Funct. Mater. 16, 760–765 (2006)

    Article  Google Scholar 

  25. 25.

    B. Watts, W.J. Belcher, L. Thomsen, H. Ade, P.C. Dastoor, A quantitative study of PCBM diffusion during annealing of P3HT: PCBM blend films. Macromolecules 42(21), 8392–8397 (2009)

    Article  Google Scholar 

  26. 26.

    J.U. Lee, J.W. Jung, T. Emrick, T.P. Russell, W.H. Jo, Morphology control of a Polythiophene-fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor–acceptor diblock copolymer. Nanotechnology 21, 105201 (2010)

    Article  Google Scholar 

  27. 27.

    W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)

    Article  Google Scholar 

  28. 28.

    E.A. Parlak, The blend ratio effect on the photovoltaic performance and stability of poly (3-hexylthiophene):[6, 6]-phenyl-C61 butyric acid methyl ester (PCBM) and poly(3-octylthiophene):PCBM solar cells. Sol. Energy Mater. Sol. Cells 100, 174–184 (2012)

    Article  Google Scholar 

  29. 29.

    I. Etxebarria, J. Ajuria, R. Pacios, Solution-processable polymeric solar cells: a review on materials, strategies and cell architectures to overcome 10%. Org. Electron. 19, 34–60 (2015)

    Article  Google Scholar 

  30. 30.

    Y. Lu et al., Temperature-dependent morphology evolution of P3HT: PCBM blend solar cells during annealing processes. Synth. Met. 162(23), 2039–2046 (2012)

    Article  Google Scholar 

  31. 31.

    B.Y. Kadem, A.K. Hassan, W. Cranton, Enhancement of power conversion efficiency of P3HT: PCBM solar cell using solution processed Alq3 film as electron transport layer. J. Mater. Sci. Mater. Electron. 26(6), 3976–3983 (2015)

    Article  Google Scholar 

  32. 32.

    B. Gunduz, I.S. Yahia, F. Yakuphanoglu, Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al organic devices: comparison study. Microelectron. Eng. 98, 41–57 (2012)

    Article  Google Scholar 

  33. 33.

    M.M. El-Nahass, K.F. Abd, El-Rahman, nickel phthalocyanine thin films. J. Alloys Compd. 430, 194–199 (2007)

    Article  Google Scholar 

  34. 34.

    D.H. Apaydin, D.E. Yildiz, A. Cirpan, L. Toppare, Optimizing the organic solar cell efficiency: role of the active layer thickness. Sol. Energy Mater. Sol. Cells 113, 100–105 (2013)

    Article  Google Scholar 

  35. 35.

    B. Qi, Q. Zhou, J. Wang, Exploring the open-circuit voltage of organic solar cells under low temperature. Sci. Rep. 5, 11363 (2015)

    Article  Google Scholar 

  36. 36.

    Y. Shen, K. Li, N. Majumdar, J.C. Campbell, M.C. Gupta, Bulk and contact resistance in P3HT:PCBM heterojunction solar cells. Sol. Energy Mater. Sol. Cells 95, 2314–2317 (2011)

    Article  Google Scholar 

  37. 37.

    O. Oklobia, T.S. Shafai, Correlation between charge carriers mobility and nanomorphology in a blend ofP3HT/PCBM bulk heterojunction solar cell: impact on recombination mechanisms. Sol. Energy Mater. Sol. Cells 122, 158–163 (2014)

    Article  Google Scholar 

  38. 38.

    B. Kadem, A. Hassan, W. Cranton, Performance optimization of P3HT:PCBM solar cells by controlling active layer thickness, Proceedings of the 31st European photovoltaic solar energy conference and exhibition, EUPVSEC (2015, Hamburg, Germany)

  39. 39.

    P.R. Somani, S.P. Somani, M. Umeno, Toward organic thick film solar cells: three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods. Appl. Phys. Lett. 91, 173503 (2007)

    Article  Google Scholar 

  40. 40.

    M.-S. Kim, B.-G. Kim, J. Kim, Effective Variables To Control the Fill Factor of Organic Photovoltaic Cells. ACS. Appl. Mater. Interfaces 1, 1264 (2009)

    Article  Google Scholar 

  41. 41.

    T.-Y. Chu, O.-K. Song, Hole mobility of N, N -bis-naphthalen-1-yl)-N, N -bis(phenyl)-benzidine investigated by using space-charge-limited currents. Appl. Phys. Lett. 90, 203512 (2007)

    Article  Google Scholar 

  42. 42.

    Ö. Güllü, Ş. Aydoğan, A. Türüt, High barrier Schottky diode with organic interlayer. Solid State Commun. 152(5), 381–385 (2012)

    Article  Google Scholar 

  43. 43.

    C. Liu, X. Yong, Y.-Y. Noh, Contact engineering in organic field-effect transistors. Mater. Today 18(2), 79–96 (2015)

    Article  Google Scholar 

  44. 44.

    Y. Lou et al., Charge transport characteristics in P3HT:PCBM organic blends under illumination: Influence of metal work functions. Chem. Phys. Lett. 529, 64–68 (2012)

    Article  Google Scholar 

  45. 45.

    V. Shrotriya, Y. Yang, Capacitance-voltage characterization of polymer light-emitting diodes. J. Appl. Phys. 97, 054504 (2005)

    Article  Google Scholar 

  46. 46.

    N. Simsir, H. Safak, Ö.F. Yüksel, M. Kus, Investigation of current voltage and capacitance voltage characteristics of Ag/perylene -monoimide/n-GaAs Schottky diode. Curr. Appl. Phys. 12, 1510–1514 (2012)

    Article  Google Scholar 

  47. 47.

    C.-H. Ruan, Y.-J. Lin, High Schottky barrier height of Au contact on Si-nanowire arrays with sulfide treatment. J. Appl. Phys. 114, 143710 (2013)

    Article  Google Scholar 

  48. 48.

    Z. Khurelbaatar, K.H. Shim, J. Cho, H. Hong, V.R. Reddy, C.J. Choi, Temperature dependent current–voltage and capacitance–voltage characteristics of an Au/n-type Si Schottky Barrier diode modified using a PEDOT:PSS interlayer. Mater. Trans. 56(1), 10–16 (2015)

    Article  Google Scholar 

  49. 49.

    H. Li, Z.G. Zhang, Y. Li, J. Wang, Tunable open-circuit voltage in ternary organic solar cells. Appl. Phys. Lett. 101, 163302 (2012)

    Article  Google Scholar 

  50. 50.

    D. Gupta, S. Mukhopadhyay, K.S. Narayan, Fill factor in organic solar cells. Solar Energy Mater Solar Cells 94, 1309–1313 (2010)

    Article  Google Scholar 

  51. 51.

    X. Yang, A. Uddin, Effect of thermal annealing on P3HT: PCBM bulk-heterojunction organic solar cells: a critical review. Renew. Sustain. Energy Rev. 30, 324–336 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the sponsorship from Iraq Ministry of Higher Education and Scientific Research, Faculty of Science of Babylon University, Iraq and Mathew Kitchen from Material and Engineering Research Institute (MERI) at Sheffield Hallam University, UK for his assistance in optical imaging.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aseel Hassan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadem, B., Hassan, A. & Cranton, W. Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J Mater Sci: Mater Electron 27, 7038–7048 (2016). https://doi.org/10.1007/s10854-016-4661-8

Download citation

Keywords

  • Active Layer
  • Barrier Height
  • Fill Factor
  • Power Conversion Efficiency
  • Ideality Factor