Electrodeposition and characterisation of CdS thin films using thiourea precursor for application in solar cells


CdS thin films have been successfully electrodeposited on glass/FTO substrates using acidic and aqueous solution of CdCl2.xH2O and thiourea (SC(NH2)2). The electrodeposition of CdS thin films were carried out potentiostatically using a 2-electrode system. The prepared films were characterised using X-ray diffraction, Raman spectroscopy, Scanning electron microscopy, Atomic force microscopy, Photoelectrochemical cell measurements, Electrical resistivity measurements and UV–Vis spectrophotometry to study their structural, compositional, morphological, electrical and optical properties, respectively. The structural studies show that the as-deposited and annealed CdS layers are polycrystalline with hexagonal crystal structure and preferentially oriented along (200) planes. The optical studies indicate that the ED-CdS layers have direct bandgaps in the range (2.53–2.58) eV for the as-deposited and (2.42–2.48) eV after annealing at 400 °C for 20 min in air. The morphological studies show the good coverage of the FTO surface by the CdS grains. The average grain sizes for the as-deposited and annealed layers were in the range ∼(60–225) nm. These grains or clusters are made out of smaller nano crystallites with the sizes in the range ~(11–33) nm. The electrical resistivity shows reduction as thickness increases. The resistivity values for the as-deposited and annealed layers were in the range (0.82–4.92) × 105 Ωcm. The optimum growth voltage for the CdS thin films was found to be at the cathodic potential of 797 mV with respect to the graphite anode. No visible precipitations of elemental S or CdS particles were observed in the deposition electrolyte showing a stable bath using thiourea during the growth.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), p. 849

    Google Scholar 

  2. 2.

    K. Deng, L. Li, Adv. Mater. 26, 2619–2635 (2014)

    Article  Google Scholar 

  3. 3.

    Q.H. Li, T. Gao, T.H. Wang, Appl. Phys. Lett. 86, 193109 (2005)

    Article  Google Scholar 

  4. 4.

    E. Sorokin, D. Klimentov, M.P. Frolov, Y.V. Korostelin, V.I. Kozlovsky, Y.P. Podmarkov, V.K. Skasyrsky, I.T. Sorokina, Appl. Phys. B 117, 1009–1014 (2014)

    Article  Google Scholar 

  5. 5.

    D. Lincot, Thin Solid Films 487, 40–48 (2005)

    Article  Google Scholar 

  6. 6.

    N.R. Paudel, C. Xiao, Y. Yan, J. Mater. Sci. Mater. Electron. 25, 1991–1998 (2014)

    Article  Google Scholar 

  7. 7.

    R.A. Berrigan, N. Maung, S.J.C. Irvine, D.J. Cole-Hamilton, D. Ellis, J. Cryst. Growth 195, 718–724 (1998)

    Article  Google Scholar 

  8. 8.

    Z. He, G. Zhao, W. Weng, P. Du, G. Shen, G. Han, Vacuum 79, 14–18 (2005)

    Article  Google Scholar 

  9. 9.

    M.C. Baykul, A. Balcioglu, Microelectron. Eng. 51–52, 703–713 (2000)

    Article  Google Scholar 

  10. 10.

    J. Han, C. Spanheimer, G. Haindl, G. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, W. Jaegermann, Solar Energy Mater. Solar Cells 95, 816–820 (2011)

    Article  Google Scholar 

  11. 11.

    S.J. Lade, M.D. Uplane, C.D. Lokhande, Mater. Chem. Phys. 53, 239–242 (1998)

    Article  Google Scholar 

  12. 12.

    I.M. Dharmadasa, J. Haigh, J. Elechtrochem. Soc. 153(1), G47–G52 (2006)

    Article  Google Scholar 

  13. 13.

    G. Sasikala, R. Dhanasekaran, C. Subramanian, Thin Solid Film 302, 71–76 (1997)

    Article  Google Scholar 

  14. 14.

    J. Nishino, S. Chatani, Y. Uotani, Y. Nosaka, J. Electroanal. Chem. 473, 217–222 (1999)

    Article  Google Scholar 

  15. 15.

    D.G. Diso, G.E.A. Muftah, V. Patel, I.M. Dharmadasa, J. Electrochem. Soc. 156(6), H647–H651 (2010)

    Article  Google Scholar 

  16. 16.

    K. Zarebska, M. Skompska, Electrochim. Acta 56, 5731–5739 (2011)

    Article  Google Scholar 

  17. 17.

    N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 2418–2429 (2015)

    Article  Google Scholar 

  18. 18.

    K. Yamaguchi, T. Yoshida, T. Sugiura, H. Minoura, J. Phys. Chem. B 102, 9677–9686 (1998)

    Article  Google Scholar 

  19. 19.

    K. Yamaguchi, P. Mukherjee, T. Yoshida, H. Minoura, Chem. Lett. 9, 864–865 (2001)

    Article  Google Scholar 

  20. 20.

    A.V. Naumov, V.N. Semenov, E.G. Goncharov, Inorg. Mater. 37(6), 647–652 (2001)

    Article  Google Scholar 

  21. 21.

    V.P. Timchenko, A.L. Novozhilov, O.A. Slepysheva, Russ. J. Gen. Chem. 74(7), 1046–1050 (2004)

    Article  Google Scholar 

  22. 22.

    P. Vanysek, Electrochemical Series Table 1 Alphabetical (CRC press LLC, Cambridge, 2000)

  23. 23.

    P.H. Jefferson, S.A. Hatfield, T.D. Veal, P.D.C. King, C.F. McConville, J. Zuniga-Perez, V. Munoz-Sanjose, Appl. Phys. Lett. 92, 022101 (2008)

    Article  Google Scholar 

  24. 24.

    A.L. Patterson, Phys. Rev. 56, 978–982 (1939)

    Article  Google Scholar 

  25. 25.

    R. Dharmadasa, I.M. Dharmadasa, T. Druffel, Adv. Eng. Mater. 16(11), 1351–1361 (2014)

    Article  Google Scholar 

  26. 26.

    A.I. Oliva, R.C. Rodriguez, O.S. Canto, V. Sosa, P. Quintana, J.L. Pena, Appl. Surf. Sci. 205, 56–64 (2003)

    Article  Google Scholar 

  27. 27.

    H.R. Moutinho, D. Albin, Y. Yan, R.G. Dhere, X. Li, C. Perkins, C.-S. Jiang, B. To, M.M. Al-Jassim, Thin Solid Films 436, 175–180 (2003)

    Article  Google Scholar 

  28. 28.

    R. Litrán, R. Alcantára, E. Blanco, M. Ramirez-del-solar, J. Sol–Gel. Sci. Technol. 8(1–3), 275–283 (1997)

    Google Scholar 

  29. 29.

    P. Nandakumar, C. Vijayan, M. Rajalakshmi, A.K. Arora, Y.V.G.S. Murti, Phys. E 11, 377–383 (2001)

    Article  Google Scholar 

  30. 30.

    C. Wu, J. Jie, L. Wang, Y. Yu, Q. Peng, X. Zhang, J. Cai, H. Guo, D. Wu, Y. Jiang, Nanotechnology 21, 505203 (7pp) (2010)

  31. 31.

    I.M. Dharmadasa, P.A. Bingham, O.K. Echendu, H.I. Salim, T. Druffe, R. Dharmadasa, G.U. Sumanasekera, R.R. Dharmadasa, M.B. Dergacheva, K.A. Mit, K.A. Urazov, L. Bowen, M. Walls, A. Abbas, Coating 4, 380–415 (2014)

    Article  Google Scholar 

  32. 32.

    K.S. Balakrishnan, A.C. Rastogi, Solar Energy Mater. 20, 417–434 (1990)

    Article  Google Scholar 

  33. 33.

    E. Bertran, J.L. Morenza, J. Esteve, Thin Solid Film 123, 297–306 (1985)

    Article  Google Scholar 

  34. 34.

    W.J. Danaher, L.E. Lyons, G.C. Morris, Solar Energy Mater. 2, 137–148 (1985)

    Article  Google Scholar 

  35. 35.

    T.L. Chu, S.S. Chu, Prog. Photovoltaics Res. Appl. 1, 31–42 (1993)

    Article  Google Scholar 

  36. 36.

    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Prog. Cryst. Growth Charact. Mater. 52, 247–279 (2006)

    Article  Google Scholar 

  37. 37.

    X. Wu, Sol. Energy 77, 803–814 (2004)

    Article  Google Scholar 

  38. 38.

    A.K. Mokhopadhyay, A.K. Chakraborty, A.P. Chatterjee, S.K. Lahiri, Thin Solid Film 209, 92–96 (1992)

    Article  Google Scholar 

Download references


The authors would like to thank Paul Bingham, Obi Kingsly Echendu, Fijay Fauzi, Nor Azlian Abdul-Manaf, Mohammad Madugu for their contributions to this work. The main author would like to acknowledge the Ministry of Higher Education and Scientific Research at Kurdistan Region of Iraq for financial support.

Author information



Corresponding author

Correspondence to H. I. Salim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salim, H.I., Olusola, O.I., Ojo, A.A. et al. Electrodeposition and characterisation of CdS thin films using thiourea precursor for application in solar cells. J Mater Sci: Mater Electron 27, 6786–6799 (2016). https://doi.org/10.1007/s10854-016-4629-8

Download citation


  • Chemical Bath Deposition
  • Growth Voltage
  • Deposition Electrolyte
  • Cathodic Potential Range