Skip to main content
Log in

Thermally stable Ba0.8Ca0.2TiO3–Bi(Mg0.5Zr0.5)O3 solid solution with low dielectric loss in a broad temperature usage range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free (1−x)Ba0.8Ca0.2TiO3xBi(Mg0.5Zr0.5)O3 [(1−x)BCT–xBMZ, 0 ≤ x ≤ 0.3] ceramics were fabricated via a conventional solid-state reaction method. The structure and dielectric properties of BCT–BMZ ceramics were systematically investigated. X-ray diffraction patterns and Raman spectra show that a systematically structural change form a tetragonal to pseudo-cubic phase occurred at about x = 0.06–0.08. As x values increased to 0.3, the temperature stability of permittivity of ceramics was markedly increased (Δε/ε 27 °C ≤ ±15 %) and low dielectric loss (≤2 %) was obtained over a wide temperature range from 27 to 290 °C at 1 kHz. These results indicate that (1−x)BCT–xBMZ ceramics are promising candidates for thermally stabile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Zeb, S.J. Miline, J. Eur. Ceram. Soc. 34, 1727–1732 (2014)

    Article  Google Scholar 

  2. J.B. Lim, S.J. Zhang, N. Kim, T.R. Shrout, J. Am. Ceram. Soc. 92, 679–682 (2009)

    Article  Google Scholar 

  3. R. Dittmer, E.M. Anton, W. Jo, H. Simons, J.E. Daniels, M. Hoffman, J. Pokorny, L.M. Reaney, J. Rödel, J. Am. Ceram. Soc. 95, 3519–3524 (2012)

    Article  Google Scholar 

  4. B. Xiong, H. Hao, S. Zhang, H.X. Liu, M.H. Cao, Structure. J. Am. Ceram. Soc. 94, 3412–3417 (2011)

    Article  Google Scholar 

  5. S. Wang, H. He, H. Su, J. Mater. Sci.: Mater. Electron. 24, 2385–2389 (2013)

    Google Scholar 

  6. Y. Yuan, M. Du, S. Zhang, J. Mater. Sci.: Mater. Electron. 20, 157–162 (2009)

    Google Scholar 

  7. J. Chen, H.M. Chan, M.P. Harmer, J. Am. Ceram. Soc. 72, 593–598 (2005)

    Article  Google Scholar 

  8. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  9. B.A. Tuttle, D.A. Payne, Ferroelectrics 37, 603–606 (1981)

    Article  Google Scholar 

  10. D. Bochenek, R. Skulski, P. Wawrzala, D. Brzezinska, J. Alloys Compd. 509, 5356–5363 (2011)

    Article  Google Scholar 

  11. S. Wongsaenmai, S. Ananta, R. Yimnirun, J. Alloys Compd. 474, 241–245 (2009)

    Article  Google Scholar 

  12. J.Y. Xu, M. Jin, J. Tong, M.L. Shi, X.J. Wu, B.L. Lu, L.Q. Luo, J. Alloys Compd. 449, 36–39 (2008)

    Article  Google Scholar 

  13. S. Wongsaenmai, X.L. Tan, S. Ananta, R. Yimnirun, J. Alloys Compd. 454, 331–339 (2008)

    Article  Google Scholar 

  14. N. Raengthon, D.P. Cann, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1954–1958 (2011)

    Article  Google Scholar 

  15. Y.M. Han, L.X. Li, F. Wang, Y.J. Yuan, Y.P. Miao, J.S. Zhao, K.L. Zhang, J. Mater. Sci.: Mater. Electron. 26, 8261–8266 (2015)

    Google Scholar 

  16. N. Raengthon, T. Sebastian, D. Cumming, I.M. Reancy, D.P. Cann, J. Am. Ceram. Soc. 95, 3554–3561 (2012)

    Article  Google Scholar 

  17. J. Chen, X.L. Chen, H. Fen, Y.L. Wang, H.F. Zhou, L. Fan, J. Electron. Mater. 43, 1112–1118 (2015)

    Article  Google Scholar 

  18. L.X. Li, J.Y. Yu, N. Zhang, J. Ye, J. Mater. Sci.: Mater. Electron. 26, 9522–9528 (2015)

    Google Scholar 

  19. Q. Zhang, Z.R. Li, F. Li, Z. Xu, J. Am. Ceram. Soc. 94, 4335–4339 (2011)

    Article  Google Scholar 

  20. X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, Ceram. Int. 41, 2081–2088 (2015)

    Article  Google Scholar 

  21. L.L. Zhang, X.S. Wang, H. Liu, X. Yao, J. Am. Ceram. Soc. 93, 1049–1055 (2010)

    Article  Google Scholar 

  22. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, J. Am. Ceram. Soc. 93, 2942–2944 (2010)

    Article  Google Scholar 

  23. Y.S. Tian, Y.S. Gong, D.W. Meng, H. Deng, B. Kuang, J. Mater. Sci.: Mater. Electron. 26, 3750–3756 (2015)

    Google Scholar 

  24. A. Zeb, S.J. Milne, J. Am. Ceram. Soc. 96, 2887–2892 (2013)

    Article  Google Scholar 

  25. C. Bhardwaj, B. Daniel, D. Kaur, J. Phys. Chem. Solids 74, 94–100 (2013)

    Article  Google Scholar 

  26. T. Li, K. Yang, R.Z. Xue, Y.C. Xue, Z.P. Chen, J. Mater. Sci.: Mater. Electron. 22, 838–842 (2011)

    Google Scholar 

  27. Y.S. Tian, Y.S. Gong, Z.L. Zhang, D.W. Meng, J. Mater. Sci.: Mater. Electron. 25, 5467–5474 (2014)

    Google Scholar 

  28. K. Suzuki, K. Kijima, J. Mater. Sci. 40, 1289–1292 (2005)

    Article  Google Scholar 

  29. C.C. Huang, D.P. Cann, X.L. Tan, N. Vittayakorn, J. Appl. Phys. 102, 044103 (2007)

    Article  Google Scholar 

  30. R.D.J. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  31. D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313–3318 (2003)

    Article  Google Scholar 

  32. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, Phys. Rev. B 69, 092104 (2004)

    Article  Google Scholar 

  33. S.Y. Zheng, E. Odendo, L.J. Liu, D.P. Shi, Y.M. Huang, L.L. Fan, J. Appl. Phys. 113, 094102 (2013)

    Article  Google Scholar 

  34. X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, J. Am. Ceram. Soc. 98, 804–810 (2014)

    Article  Google Scholar 

  35. M.K. Zhu, L.Y. Liu, Y.D. Hou, H. Wang, H. Yan, J. Am. Ceram. Soc. 90, 120–124 (2007)

    Article  Google Scholar 

  36. H. Yu, Z.G. Ye, J. Appl. Phys. 103, 034114 (2008)

    Article  Google Scholar 

  37. Z. Chen, G.Z. Li, X.J. Sun, L.J. Liu, L. Fang, Ceram. Int. 41, 11057–11061 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 11364012 and 11464009), Natural Science Foundation of Guangxi (Nos. 2013GXNSFAA019291, 2014GXNSFAA118326, and 2014GXNSFAA118312), Project of Guangxi Scientific Research and Technical Development (No. 1348020-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Chen, X., Ma, D. et al. Thermally stable Ba0.8Ca0.2TiO3–Bi(Mg0.5Zr0.5)O3 solid solution with low dielectric loss in a broad temperature usage range. J Mater Sci: Mater Electron 27, 6552–6557 (2016). https://doi.org/10.1007/s10854-016-4599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4599-x

Keywords

Navigation