Performance and stability of PTB7:PC71BM based polymer solar cells, with ECZ and/or PVK dopants, under the application of an external electric field

  • Armando Álvarez-Fernández
  • José-Luis Maldonado
  • Enrique Pérez-Gutiérrez
  • Mario Rodríguez
  • Gabriel Ramos-Ortíz
  • Oracio Barbosa-García
  • Marco-Antonio Meneses-Nava
  • Mikhail G. Zolotukhin


The effect on the J–V behavior of polymer solar cells (PSCs) based on the active layer PTB7:PC71BM under a previous application of an external electric field (Eext) is presented. The active layer is doped with 0.01–0.04 wt. ratio (with respect to PTB7) of poly(9-vinylcarbazole) (PVK) as a photoconductor, and/or 0.25–0.5 wt. ratio of 9-ethylcarbazole (ECZ) as plasticizer. The general PSC structure was Glass-ITO/PEDOT:PSS/PTB7:PC71BM:dopant/PFN/FM where dopant means PVK, ECZ or a mixture of them. Field’s metal (FM) is an eutectic alloy with a melting point above 62 °C, which is deposited in a vacuum free atmosphere. Electric fields of 5 or −70 V/μm (forward and reversed polarity, respectively) are applied. For PSCs doped with PVK, under forward polarity, it is observed a remarkable variation (36 %) on Jsc: from 7.7 to 4.9 mA/cm2, while Voc remains almost constant: ~0.76 V; whereas with the reversed polarity, a drastic variation of 95 % is observed on Voc: from 0.76 to 0.04 V; while Jsc value changes from 7.4 to 5.6 mA/cm2 (24 %). On the other hand, PSCs doped with the combination of ECZ and PVK, an increase of 10 % in Jsc is reached for reversed bias (Eext = −70 V); and without applying any field, and keep them under N2 atmosphere, a slower photovoltaic degradation, with respect to that one from all the other studied samples, is shown over 57 days of monitoring them: FF variation is of just 6 % and PCE decays only 21 %.


Active Layer Fill Factor External Electric Field Power Conversion Efficiency Forward Bias 



This work was supported by CONACYT-SENER (México) Project 153094 and CeMIE-Sol 207450/27 (México) call 2013-02, Fondo Sectorial CONACYT-SENER-SUSTENTABILIDAD ENERGETICA. Also, from Fondo CONACYT-SEP CB-151842 and DGAPA-UNAM (PAPIIT IN 105314-3). AAF thanks CONACYT for the granted scholarship and to Universidad Autónoma de Aguascalientes (UAA) for its support. Authors also thank Martín Olmos for his technical assistance.


  1. 1.
    S.H. Liao, H.J. Jhuo, P.N. Yeh, Y.S. Cheng, Y.L. Li, Y.H. Lee, S. Sharma, S.A. Chen, Single junction inverted polymer solar cell reaching power conversion efficiency 10.31 % by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci. Rep. 4, 6813-1–6813-7 (2014)Google Scholar
  2. 2.
    J. Yu, Y. Zheng, J. Huang, Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics. Polymers 6, 2473–2509 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Yan, B.R. Saunders, Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 4, 43286–43314 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of polymer solar cells. Adv. Mater. 24, 580–612 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Sista, Z. Hong, L.M. Chen, Y. Yang, Tandem polymer photovoltaic cells-current status, challenges and future outlook. Energy Environ. Sci. 4, 1606–1620 (2011)CrossRefGoogle Scholar
  6. 6.
    C. Sentein, C. Fiorini, A. Lorin, J.-M. Nunzi, Molecular rectification in oriented polymer structures. Adv. Mater. 9, 809–811 (1997)CrossRefGoogle Scholar
  7. 7.
    L. Sicot, C. Fiorini, A. Lorin, P. Raimond, C. Sentein, J.-M. Nunzi, Improvement of the photovoltaic properties of polythiophene-based cells. Sol. Energy Mater. Sol. Cells 63, 49–60 (2000)CrossRefGoogle Scholar
  8. 8.
    S. Athanasopoulos, N.C. Greenham, R.H. Friend, Field-enhanced recombination at low temperatures in an organic photovoltaic blend. Phys. Rev. B 92, 125301-1–125301-7 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Li, Y. Feng, M. Sun, Photoinduced charge transport in a BHJ solar cell controlled by an external electric field. Sci. Rep. 5, 13970-1–13970-11 (2015)Google Scholar
  10. 10.
    N. Chaturvedi, S.K. Swami, A. Kumar, V. Dutta, Role of ZnO nanostructured layer spray deposited under an electric field in stability of inverted organic solar cells. Sol. Energy Mater. Sol. Cells 126, 74–82 (2014)CrossRefGoogle Scholar
  11. 11.
    N. Chaturvedi, F. Alam, S.K. Swami, V. Dutta, Effect of electric field on the spray deposited poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) layer and its use in organic solar cell. J. Appl. Phys. 114, 184501-1–184501-6 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Li, Y. Hou, Y. Wang, Z. Feng, B. Feng, L. Qin, F. Teng, Thermal treatment under reverse bias: effective tool for polymer/fullerene bulk heterojunction solar cells. Synth. Met. 158, 190–193 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Solanki, B. Wu, T. Salim, E.K.L. Yeow, Y.M. Lam, T.C. Sum, Performance improvements in polymer nanofiber/fullerene solar cells with external electric field treatment. J. Phys. Chem. C 118, 11285–11291 (2014)CrossRefGoogle Scholar
  14. 14.
    F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003)CrossRefGoogle Scholar
  15. 15.
    S.Y. Ma, Y.M. Shen, P.C. Yang, C.S. Chen, C.F. Lin, Morphological modification induced by external electric field during solution process of organic solar cells. Org. Electron. 13, 297–301 (2012)CrossRefGoogle Scholar
  16. 16.
    W. Zhou, J. Shi, L. Lv, L. Chen, Y. Chen, A mechanistic investigation of morphology evolution in P3HT–PCBM films induced by liquid crystalline molecules under external electric field. Phys. Chem. Chem. Phys. 17, 387–397 (2015)CrossRefGoogle Scholar
  17. 17.
    J.R. Tumbleston, B.A. Collins, L. Yang, A.C. Stuart, E. Gann, W. Ma, W. You, H. Ade, The influence of molecular orientation on organic bulk heterojunction solar cells. Nat. Photon. 8, 385–391 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Polymer solar cells with enhanced fill factors. Nat. Photon. 7, 825–833 (2013)CrossRefGoogle Scholar
  19. 19.
    B. Carsten, J.M. Szarko, H.J. Son, W. Wang, L. Lu, F. He, B.S. Rolczynski, S.J. Lou, L.X. Chen, L. Yu, Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications. J. Am. Chem. Soc. 133, 20468–20475 (2011)CrossRefGoogle Scholar
  20. 20.
    E. Pérez-Gutiérrez, J.L. Maldonado, J. Nolasco, G. Ramos-Ortíz, M. Rodríguez, U. Mendoza-De la Torre, M.A. Meneses-Nava, O. Barbosa-García, H. García-Ortega, N. Farfán, G. Granados, R. Santillan, E. Juaristi, Titanium oxide:fullerene composite films as electron collector layer in organic solar cells and the use of an easy-deposition cathode. Opt. Mater. 36, 1336–1341 (2014)CrossRefGoogle Scholar
  21. 21.
    O. Ostroverkhova, W.E. Moerner, Organic photorefractives: mechanisms, materials, and applications. Chem. Rev. 104, 3267–3314 (2004)CrossRefGoogle Scholar
  22. 22.
    J.L. Maldonado, Y. Ponce-de-León, G. Ramos-Ortíz, M. Rodríguez, M.A. Meneses-Nava, O. Barbosa-García, R. Santillán, N. Farfán, High diffraction efficiency at low electric field in photorefractive polymers doped with arylimine chromophores. J. Phys. D Appl. Phys. 42, 075102-1–075102-6 (2009)CrossRefGoogle Scholar
  23. 23.
    V.M. Herrera-Ambriz, J.L. Maldonado, M. Rodríguez, R. Castro-Beltrán, G. Ramos-Ortíz, N.E. Magaña-Vergara, M.A. Meneses-Nava, O. Barbosa-García, R. Santillan, N. Farfán, F.X. Dang, P.G. Lacroix, I. Ledoux-Rak, Highly efficient photorefractive organic polymers based on benzonitrile shiff bases nonlinear chromophores. J. Phys. Chem. C 115, 23955–23963 (2011)CrossRefGoogle Scholar
  24. 24.
    H.S. Kim, C.H. Kim, C.S. Ha, J.K. Lee, Organic solar cell devices based on PVK/porphyrin system. Synth. Met. 117, 289–291 (2001)CrossRefGoogle Scholar
  25. 25.
    Z. Tian-Hui, Z. Su-Ling, P. Ling-Yu, X. Zheng, J. Si-Ting, L. Xiao-Dong, K. Chao, X. Xu-Rong, Solar cells based on the poly(n-vinylcarbazole):porphyrin:tris(8-hydroxyquinolinato) aluminium blend system. Chin. Phys. B 20, 038401-1–038401-7 (2011)Google Scholar
  26. 26.
    D. An, J. Zou, H. Wu, J. Peng, W. Yang, Y. Cao, White emission polymer light-emitting devices with efficient electron injection from alcohol/water-soluble polymer/Al bilayer cathode. Org. Electron. 10, 299–304 (2009)CrossRefGoogle Scholar
  27. 27.
    D. Romero-Borja, J.L. Maldonado, O. Barbosa-García, M. Rodríguez, E. Pérez-Gutiérrez, R. Fuentes-Ramírez, G. de la Rosa, Polymer solar cells based on P3HT:PC71BM doped at different concentrations of isocyanate-treated graphene. Synth. Met. 200, 91–98 (2015)CrossRefGoogle Scholar
  28. 28.
    B. Ebenhoch, S.A.J. Thomson, K. Genevičius, G. Juška, I.D.W. Samuel, Charge carrier mobility of the organic photovoltaic materials PTB7 PC71BM and its influence on device performance. Org. Electron. 22, 62–68 (2015)CrossRefGoogle Scholar
  29. 29.
    P. D’Angelo, M. Barra, A. Cassinese, M.G. Maglione, P. Vacca, C. Minarini, A. Rubino, Electrical transport properties characterization of PVK (poly n-vinyl carbazole) for electroluminescent devices applications. Solid-State Electron. 51, 123–129 (2007)CrossRefGoogle Scholar
  30. 30.
    S.H. Lin, S. Lang, J.Y. Sun, C.F. Lin, Morphologic improvement of the P3HT:indene-C60 bis-adduct (ICBA) blend film with mixed solvent in inverted polymer solar cells, in 38th IEEE Photovoltaic Specialists Conference (PVSC), IEEE, Austin, TX (2012), pp. 2761–2763Google Scholar
  31. 31.
    C. Dridi, V. Barlier, H. Chaabane, J. Davenas, H.B. Ouada, Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(n-vinyl carbazole):TiO2 nanocomposites for solar cell applications. Nanotechnology 19, 375201-1–375201-11 (2008)CrossRefGoogle Scholar
  32. 32.
    L. Qian, D. Bera, P.H. Holloway, White light emission from single layer poly (n-vinylcarbazole) polymeric light-emitting devices by mixing singlet and triplet excimer emissions. J. Chem. Phys. 127, 244707-1–244707-6 (2007)Google Scholar
  33. 33.
    J. Kong, J. Lee, Y. Jeong, M. Kim, S.O. Kang, K. Lee, Biased internal potential distributions in a bulk-heterojunction organic solar cell incorporated with TiOx interlayer. Appl. Phys. Lett. 100, 213305-1–213305-3 (2012)Google Scholar
  34. 34.
    S. Karak, Z.A. Page, J.S. Tinkham, P.M. Lahti, T. Emrick, V.V. Duzhko, Raising efficiency of organic solar cells with electrotropic additives. Appl. Phys. Lett. 106, 103303-1–103303-5 (2015)CrossRefGoogle Scholar
  35. 35.
    P.S. Chung, P.H. Holloway, Photoluminescence of solution processed poly n-vinyl carbazole films. J. Appl. Polym. Sci. 114, 1–9 (2009)CrossRefGoogle Scholar
  36. 36.
    J.C. Ribierre, L. Mager, F. Gillot, A. Fort, Influence of the average molecular weight and the concentration of plasticizer on the orientational dynamics of chromophores in guest-host polymers. J. Appl. Phys. 100, 043103-1–043103-9 (2006)CrossRefGoogle Scholar
  37. 37.
    Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv. Mater. 22, E135–E138 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Armando Álvarez-Fernández
    • 1
    • 2
  • José-Luis Maldonado
    • 1
  • Enrique Pérez-Gutiérrez
    • 1
  • Mario Rodríguez
    • 1
  • Gabriel Ramos-Ortíz
    • 1
  • Oracio Barbosa-García
    • 1
  • Marco-Antonio Meneses-Nava
    • 1
  • Mikhail G. Zolotukhin
    • 3
  1. 1.Centro de Investigaciones en ÓpticaLeónMexico
  2. 2.Universidad Autónoma de AguascalientesAguascalientesMexico
  3. 3.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations