Skip to main content
Log in

Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The magnetic, dielectric and electrical properties of (Co, Zn) co-doped SnO2 nanoparticles were investigated. The polycrystalline samples of (Co, Zn) co-doped SnO2 nanoparticles were prepared using a co-precipitation method. X-ray diffraction confirmed that the (Co, Zn) co-doped SnO2 powder samples have the same tetragonal structure as pure SnO2 nanoparticles. The magnetization measurements revealed that the Zn co-doped SnO2 samples exhibit room temperature ferromagnetism. Magnetic hysteresis loops were observed at room temperature with high coercivity H c of 85 Oe and remanent magnetization M r of 0.412 memu/g for 1 wt% Zn co-doped sample. A decrease in the dielectric constant was observed with an increase in Zn doping content and frequency, at room temperature. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with increase in doping concentration and frequency. This study demonstrates that the (Co, Zn) co-doped SnO2 materials can be used for applications in ultrahigh dielectric materials and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)

    Article  Google Scholar 

  2. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nature Mater. 9, 965–974 (2010)

    Article  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  Google Scholar 

  4. I. Zutić, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  5. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998)

    Article  Google Scholar 

  6. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363 (1996)

    Article  Google Scholar 

  7. L.L. Sun, F.W. Yan, H.X. Zhang, J.X. Wang, Y.P. Zeng, G.H. Wang, J.M. Li, Room-temperature ferromagnetism and in-plane magnetic anisotropy characteristics of nonpolar GaN: Mn films. Appl. Surf. Sci. 255, 7451–7454 (2009)

    Article  Google Scholar 

  8. G. Husnain, F. Tao, S.D. Yao, Structural and magnetic properties of co implanted n-GaN dilute magnetic semiconductors. Phys. B 405, 2340 (2010)

    Article  Google Scholar 

  9. Z. Lu, H.S. Hsu, Y. Tzeng, J.C.A. Huang, Carrier-mediated ferromagnetism in single crystalline (Co, Ga)-codopedZnO films. Appl. Phys. Lett. 94, 152507 (2009)

    Article  Google Scholar 

  10. N. Gonzalez Szwacki, J.A. Majewski, T. Dietl, Aggregation and magnetism of Cr, Mn, and Fe cations in GaN. Phys. Rev. B 83, 184417 (2011)

    Article  Google Scholar 

  11. Y.Z. Peng, D.X. Huo, H.P. He, Y. Li, L.W. Li, H.W. Wang, Z.H. Qian, Characterization of ZnO: co particles prepared by hydrothermal method for room temperature magnetism. J. Magn. Magn. Mater. 324, 690 (2012)

    Article  Google Scholar 

  12. L. Shen, R.Q. Wu, H. Pan, G.W. Peng, M. Yang, Z.D. Sha, Y.P. Feng, Mechanism of ferromagnetism in nitrogen-doped ZnO: first-principle calculations. Phys. Rev. B 78, 073306 (2008)

    Article  Google Scholar 

  13. L.B. Shi, Y. Fei, A study on defect formation and magnetic properties of nitrogen-doped ZnO nanowires by the first principles. J. Magn. Magn. Mater. 324, 3105–3112 (2012)

    Article  Google Scholar 

  14. C.W. Zhang, P.J. Wang, P. Li, Ferromagnetic ordering of carbon doped GaN semiconductor: first-principles prediction. Solid State Sci. 13, 480–483 (2011)

    Article  Google Scholar 

  15. Y.L. Zhang, X.M. Tao, M.Q. Tan, Origin of ferromagnetism in Zn-doped SnO2 from first-principles study. J. Magn. Magn. Mater. 325, 7–12 (2013)

    Article  Google Scholar 

  16. A. Punnoose, J. Hays, V. Gopal, V. Shutthanandan, Room-temperature ferromagnetism in chemically synthesized Sn1−x CoxO 2Sn1−xCoxO2 powders. Appl. Phys. Lett. 85, 1559 (2004)

    Article  Google Scholar 

  17. S.B. Ogale, R.J. Choudhary, J.P. Bhuban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S.D. Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ. Phys. Rev. Lett. 91, 077205 (2003)

    Article  Google Scholar 

  18. Y. Xiao, S. Ge, Y. Li Xi, X. Zuo, B.M. Zhou, Li Zhang Zhang, C. Li, X. Han, Z.C. Wen, Room temperature ferromagnetism of Mn-doped SnO2 thin films fabricated by sol–gel method. Appl. Sur. Sci. 254, 7459–7463 (2008)

    Article  Google Scholar 

  19. J.M. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)

    Article  Google Scholar 

  20. R. Khan, M.H. Fang, Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. Chin. Phys. B. 24, 127803 (2015)

    Article  Google Scholar 

  21. R. Khan, Zulfiqar, Y. Zaman, Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-4254-y

  22. S. Tsunkawa, K. Ishikawa, Z.Q. Li, Y. Kawazone, A. Kasuya, Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 85, 3440 (2000)

    Article  Google Scholar 

  23. S. Chen, X. Zhao, H.H. Xie, J. Liu, L. Duan, X. Ba, J. Zha, Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method. Appl. Surf. Sci. 258, 3255–3259 (2012)

    Article  Google Scholar 

  24. P. Mohanapriya, R. Pradeepkumar, N.V. Jayaand, T.S. Natarajan, Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion. Appl. Phys. Lett. 105, 022406 (2014)

    Article  Google Scholar 

  25. D. Manikandan, R. Murugan, Room temperature dilute magnetism in nanoscale Co and Zn co-doped SnO2. Superlattices Microstruct. 89, 7–14 (2016)

    Article  Google Scholar 

  26. J. Hays, A. Punnoose, A.M.H. Engelhard, J. Peloquin, K.M. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 72, 075203 (2005)

    Article  Google Scholar 

  27. X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Twinning mediated growth of Al2O3nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661–1665 (2005)

    Article  Google Scholar 

  28. J.G. Han, Z.Y. Zhu, S. Ray, A.K. Azad, W.L. Zhang, M.X. He, S.H. Li, Y.P. Zhao, Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies. Appl. Phys. Lett. 89, 031107 (2006)

    Article  Google Scholar 

  29. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  30. P.S. Szu, Y.C. Lin, AC impedance studies of copper doped silica glass. Phys. Chem. Mater. 82, 295–300 (2003)

    Article  Google Scholar 

  31. O. Pakma, N. Serinl, T. Serin, S. Altında, Influence of frequency and bias voltage on dielectric properties and electrical conductivity of Al/TiO2/p-Si/p+ (MOS) structures. J. Phys. D Appl. Phys. 41, 215103 (2008)

    Article  Google Scholar 

  32. C.H. Ho, C.D. Liu, C.H. Hsieh, K.H. Hsieh, S.N. Lee, High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization. Synth. Met. 158, 630–637 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Zulfiqar, Fashu, S. et al. Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles. J Mater Sci: Mater Electron 27, 5960–5966 (2016). https://doi.org/10.1007/s10854-016-4517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4517-2

Keywords

Navigation