Skip to main content
Log in

Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermostable nanocomposites based on interpenetrating polymer network bismaleimide/cyanate ester (BMI/CE) copolymer, derived from bisphenol A dicyanate, 4,4′-bismaleimidodiphenyl methane, and doped by 1–5 wt% organo-modified 2D montmorillonite (OMMt) nanoparticles were synthesized and characterized using a dielectric strength tester, concept 40 impedance analyzer, scanning electron microscope (SEM), dynamic mechanical analysis, and thermogravimetric analysis techniques. OMMt improves the dispersibility, alignment and interfacial strength of these nanocomposites, the electrical conductivity increase with increasing OMMt loading, and a suitable addition of OMMt can enhance the mechanical properties and dielectric property of BMI/CE copolymer. SEM analysis shows distinct characteristics of a ductile fracture of the blends. In addition, the OMMt/BMI/CE nanocomposites have a better thermal stability and a higher thermal conductivity compared to those of BMI/CE resin with the increasing of OMMt content. All of these changes in properties are closely correlated with the OMMt/BMI/CE nanocomposites, which could form an interaction interface structure in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Z.M. Dang, J.K. Yuan, J.W. Zha et al., Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater Sci. 57(4), 660–723 (2012)

    Article  Google Scholar 

  2. G. Subodh, V. Deepu, P. Mohanan et al., Dielectric response of high permittivity polymer ceramic composite with low loss tangent. Appl. Phys. Lett. 95(6), 062903–062906 (2009)

    Article  Google Scholar 

  3. G.L. Wu, K.C. Kou, M. Chao et al., Preparation and characterization of bismaleimide-triazine/epoxy interpenetrating polymer networks. Thermochim. Acta 537, 44–50 (2012)

    Article  Google Scholar 

  4. E.S. Kim, J.H. Shim, J.Y. Woo et al., Effect of the silane modification of clay on the tensile properties of nylon 6/clay nanocomposites. J. Appl. Polym. Sci. 117(2), 809–816 (2010)

    Article  Google Scholar 

  5. G.L. Wu, K.C. Kou, M. Chao et al., Preparation and properties of nano-SiO2/TDE-85/BMI/BADCy composites. J. Wuhan Univ. Technol. Mater. Sci. Ed. 28(2), 261–264 (2013)

    Article  Google Scholar 

  6. S. Ganguli, D. Dean, K. Jordan et al., Mechanical properties of intercalated cyanate ester–layered silicate nanocomposites. Polymer 44, 1315–1319 (2003)

    Article  Google Scholar 

  7. Y.Y. Siao, S.M. Shau, S.H. Hu et al., Nonlinear optical hyperbranched polyaspartimide/montmorillonite nanocomposites based on reactive fluorine- or phosphorous-containing organoclays. Polymer 54(15), 3850–3859 (2013)

    Article  Google Scholar 

  8. H.B. Chen, Y.Z. Wang, M. Sánchez-Soto et al., Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay. Polymer 53(25), 5825–5831 (2012)

    Article  Google Scholar 

  9. M. Liu, X. Zhang, M. Zammarano et al., Effect of montmorillonite dispersion on flammability properties of poly(styrene-co-acrylonitrile) nanocomposites. Polymer 52(14), 3092–3103 (2011)

    Article  Google Scholar 

  10. L.J. Yang, G. Bai, Y. Liu et al., Electric field inducement of montmorillonite in ldpe and properties of electrical tree growing in this composite. IEEE Trans. Dielectr. Electr. Insul. 22(3), 1684–1693 (2015)

    Article  Google Scholar 

  11. X.F. Li, M. Xu, K. Zhang et al., Influence of organic intercalants on the morphology and dielectric properties of XLPE/montmorillonite nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 21, 1705–1717 (2014)

    Article  Google Scholar 

  12. J. Gilman, R. Harris, C. Jackson, et al., in Phenolic Cyanate Ester Clay Nanocomposites: Effect of Ammonium Ion Structure on Flammability and Nano-dispersion. Polymeric Materials Science and Engineering, Washington, 2000, vol. 82, pp. 276–277

  13. Y.Q. Wang, K.C. Kou, G.L. Wu et al., The effect of bis allyl benzoxazine on the thermal, mechanical and dielectric properties of bismaleimide-cyanate blend polymers. RSC Adv. 5, 58821–58831 (2015)

    Article  Google Scholar 

  14. G.L. Wu, K.C. Kou, L.H. Zhuo et al., Preparation and characterization of novel dicyanate/benzoxazine/bismaleimide copolymer. Thermochim. Acta 559, 86–91 (2013)

    Article  Google Scholar 

  15. Y.Q. Wang, K.C. Kou, G.L. Wu et al., The curing reaction of benzoxazine with bismaleimide/cyanate ester resin and the properties of the terpolymer. Polymer 77, 354–360 (2015)

    Article  Google Scholar 

  16. R.H. Lin, W.H. Lu, C.W. Lin, Cure reactions in the blend of cyanate ester with maleimide. Polymer 45, 4423–4435 (2004)

    Article  Google Scholar 

  17. G.L. Wu, Y.H. Cheng, Q. Xie et al., Synthesis of excellent dielectric properties and thermally stable bismaleimide/cyanate ester copolymer containing phenolphthalein functional group. J. Polym. Res. 21, 615–622 (2014)

    Article  Google Scholar 

  18. K.S.S. Kumar, C.P.R. Nair, K.N. Ninan, Investigations on the cure chemistry and polymer properties of benzoxazine-cyanate ester blends. Eur. Polym. J. 45, 494–502 (2009)

    Article  Google Scholar 

  19. C.H. Lin, S.J. Huang, P.J. Wang et al., Miscibility, microstructure, and thermal and dielectric properties of reactive blends of dicyanate ester and diamine-based benzoxazine. Macromolecules 45(18), 7461–7466 (2012)

    Article  Google Scholar 

  20. Q.M. Jia, M. Zheng, C.Z. Xu et al., The mechanical properties and tribological behavior of epoxy resin composites modified by different shape nanofillers. Polym. Adv. Technol. 17(3), 168–173 (2006)

    Article  Google Scholar 

  21. Q. Wang, L. Zhu, Polymer nanocomposites for electrical energy storage. J. Polym. Sci., Part B: Polym. Phys. 49, 1421–1429 (2011)

    Article  Google Scholar 

  22. W.K. Goertzen, M. Kessler, Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair. Compos. A Appl. Sci. Manuf. 39, 761–768 (2008)

    Article  Google Scholar 

  23. S. Rimdusit, H. Ishida, Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 41(22), 7941–7949 (2000)

    Article  Google Scholar 

  24. H. Okubo, Enhancement of electrical insulation performance in power equipment based on dielectric material properties. IEEE Trans. Dielectr. Electr. Insul. 19(3), 733–754 (2012)

    Article  Google Scholar 

  25. J. Shang, Y. Zhang, L. Yu et al., Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Mater. Chem. Phys. 134, 867–874 (2012)

    Article  Google Scholar 

  26. R. Fleming, T. Pawlowski, A. Ammala et al., Electrical conductivity and space charge in LDPE containing TiO2 nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 12(4), 745–753 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (No. 51407134), (Innovative Research Group, No. 51221005), China Postdoctoral Science Special Foundation (No. 2015T81028), and Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2014JQ6199, 2015JM5215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanglei Wu or Ailing Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Cheng, Y., Wang, K. et al. Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J Mater Sci: Mater Electron 27, 5592–5599 (2016). https://doi.org/10.1007/s10854-016-4464-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4464-y

Keywords

Navigation