Advertisement

Impact of sulfur concentration on morphological, optical, electrical and thermoelectrical properties of nanostructured MoO3 thin films

  • M. AdelifardEmail author
  • M. Jahandoost
Article
  • 180 Downloads

Abstract

We have investigated the effect of sulfur concentration ([S]/[Mo] = 0–10 at.%) on nanostructural, optical and electrical properties of MoO3 thin films grown on glass substrate by spray pyrolysis technique. X-ray diffraction analysis showed that the films were crystallized with mixed structures of MoO3 orthorhombic and MoS2 hexagonal structure. According to FESEM images, the studied films have a sponge-type structure on the order of nanometers. Optical measurements revealed that two distinct inflexions indicative two transitions correspond to MoO3/MoS2 phases in agreement with the XRD analysis. The Hall effect and thermoelectric measurements have shown p-type conductivity, and the free hole density increases with increasing sulfur to molybdenum ratio, in agreement with reflectance spectra of the layers. The obtained value of Seebeck coefficient for MoO3 film with [S]/[Mo] ratio of 8 at.% was as high as 169 μV/K.

Keywords

MoO3 MoS2 Thermoelectrical Property Seebeck Coefficient Molybdenum Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Int. J. Electrochem. Sci. 3, 953 (2008)Google Scholar
  2. 2.
    V. Bhosale, A. Tiwari, J. Narayan, J. Appl. Phys. 97, 083539 (2005)CrossRefGoogle Scholar
  3. 3.
    W. Li, F. Cheng, Z. Tao, J. Chen, J. Phys. Chem. B 110, 119 (2006)CrossRefGoogle Scholar
  4. 4.
    M.S. Wittingham, Proc. Solid State Chem. 12, 41 (1978)CrossRefGoogle Scholar
  5. 5.
    S.K. Deb, Proc. R. Soc. Lond. Ser. A 304, 211 (1968)CrossRefGoogle Scholar
  6. 6.
    A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, B. Bouchikhi, Thin Solid Films 304, 39 (1997)CrossRefGoogle Scholar
  7. 7.
    A. Bouzidi, N. Benramdane, H. Tabet-Derraz, C. Mathieu, B. Khelifa, R. Desfeux, Mater. Sci. Eng. B 97, 5 (2003)CrossRefGoogle Scholar
  8. 8.
    H.M. Martínez, J. Torres, L.D. López-Carreño, M.E. Rodríguez-García, J. Supercond. Nov. Magn. 26, 2485 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Guerfi, L.H. Dao, J. Electrochem. Soc. 136, 2435 (1989)CrossRefGoogle Scholar
  10. 10.
    C. Julien, B. Yebka, G.A. Nazri, Mater. Sci. Eng. B 38, 65 (1996)CrossRefGoogle Scholar
  11. 11.
    R. Yousefi, B. Kamaluddin, Solid State Sci. 12, 252 (2010)CrossRefGoogle Scholar
  12. 12.
    L.J. Van der Pauw, Philips Res. Rep. 13, 1 (1958)Google Scholar
  13. 13.
    P.K. Manoj, B. Joseph, V.K. Vaidyan, D. Sumangala Devi Amma, Ceram. Int. 33, 273 (2007)CrossRefGoogle Scholar
  14. 14.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, 1971)Google Scholar
  15. 15.
    M.A. Butler, J. Appl. Phys. 48, 1914 (1977)CrossRefGoogle Scholar
  16. 16.
    A. Chithambararaj, A.C. Bose, J. Alloys Compd. 509, 8105 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)CrossRefGoogle Scholar
  18. 18.
    P.S. Patil, L.D. Kadam, Appl. Surf. Sci. 199, 211 (2002)CrossRefGoogle Scholar
  19. 19.
    M.-M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M. Shokooh-Saremi, Solid State Sci. 11, 233 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of PhysicsDamghan UniversityDamghanIran

Personalised recommendations