Advertisement

Critical investigation of high performance spin-coated high-κ titania thin films based MOS capacitor

  • Arvind Kumar
  • Sandip Mondal
  • K. S. R. Koteswara Rao
Article

Abstract

We report the tunable dielectric constant of titania films with low leakage current density. Titanium dioxide (TiO2) films of three different thicknesses (36, 63 and 91 nm) were deposited by the consecutive steps of solution preparation, spin-coating, drying, and firing at different temperatures. The problem of poor adhesion between Si substrate and TiO2 insulating layer was resolved by using the plasma activation process. The surface roughness was found to increase with increasing thickness and annealing temperature. The electrical investigation was carried out using metal-oxide-semiconductor structure. The flat band voltage (VFB), oxide trapped charge (Qot), dielectric constant (κ) and equivalent oxide thicknesses are calculated from capacitance–voltage (C–V) curves. The C–V characteristics indicate a thickness dependent dielectric constant. The dielectric constant increases from 31 to 78 as thickness increases from 36 to 91 nm. In addition to that the dielectric constant was found to be annealing temperature and frequency dependent. The films having thickness 91 nm and annealed at 600 °C shows the low leakage current density. Our study provides a broad insight of the processing parameters towards the use of titania as high-κ insulating layer, which might be useful in Si and polymer based flexible devices.

Keywords

TiO2 Dielectric Constant TiO2 Film TiO2 Thin Film Deep Level Transient Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the UGC for providing research scholarship and Mr. Gyan Praskah for useful discussion.

References

  1. 1.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)CrossRefGoogle Scholar
  2. 2.
    J. Robertson, Rep. Prog. Phys. 69, 327 (2006)CrossRefGoogle Scholar
  3. 3.
    K. Kita, A. Toriumi, Appl. Phys. Lett. 94, 132902 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Kumar, S. Mondal, K.S.R.K. Rao, AIP Proc. Conf. 1665, 080015 (2015)Google Scholar
  5. 5.
    K. Tomida, K. Kita, A. Toriumi, Appl. Phys. Lett. 89, 142902 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Kumar, S. Mondal, S.G. Kumar, K.S.R. Koteswara Rao, Mater. Sci. Semi. Proc. 40, 77 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Park, K.P. Biju, S. Jung, W. Lee, J. Lee, S. Kim, S. Park, J. Shin, H. Hwang, IEEE Electron Dev. Lett. 32, 476 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Jiang, X. Ou, X.X. Lan, Z.Y. Cao, X.J. Liu, W. Lu, C.J. Gong, B. Xu, A.D. Li, Y.D. Xia, J. Yin, Z.G. Liu, Appl. Phys. Lett. 104, 263506 (2014)CrossRefGoogle Scholar
  9. 9.
    P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, D. Devraj, P.V. Thomas, Thin Solid Films 550, 121 (2014)CrossRefGoogle Scholar
  10. 10.
    O. Carp, Prog. Solid State Chem. 32, 33 (2004)CrossRefGoogle Scholar
  11. 11.
    J. Robertson, J. Non-Cryst. Solids 303, 94 (2002)CrossRefGoogle Scholar
  12. 12.
    Y.Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, M.-S. Wu, Appl. Surf. Sci. 218, 98 (2003)CrossRefGoogle Scholar
  13. 13.
    V.S. Dang, H. Parala, J.H. Kim, K. Xu, N.B. Srinivasan, E. Edengeiser, M. Havenith, A.D. Wieck, T. de los Arcos, R.A. Fischer, A. Devi, Phys. Stat. Sol. (a) 211, 416 (2014)CrossRefGoogle Scholar
  14. 14.
    B.H. Lee, Y. Jeon, K. Zawadzki, W.-J. Qi, J. Lee, Appl. Phys. Lett. 74, 3143 (1999)CrossRefGoogle Scholar
  15. 15.
    S.B. Amor, L. Guedri, G. Baud, M. Jacquet, M. Ghedira, Mater. Chem. Phys. 77, 903 (2003)CrossRefGoogle Scholar
  16. 16.
    S. Dutta, A. Pandey, O.P. Thakur, R. Pal, J. Vac. Sci. Technol. A 33, 021507 (2015)CrossRefGoogle Scholar
  17. 17.
    P. Laha, S.S. Dahiwale, I. Banerjee, S.K. Pabi, D. Kimd, P.K. Barhai, V.N. Bhoraskar, S.K. Mahapatra, Nucl. Instrum. Methods Phys. Res. B 269, 2740 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Nabatame, A. Ohi, T. Chikyo, M. Kimura, H. Yamada, T. Ohishi, J. Vac. Sci. Technol. B 121, 3 (2014)Google Scholar
  19. 19.
    S. Aksoy, Y. Caglar, J. Alloys Compd. 613, 330 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Kumar, D. Kumar, Micro. Eng. 87, 447 (2010)CrossRefGoogle Scholar
  21. 21.
    M.Z.R. Khan, D.G. Hasko, M.S.M. Saifullah, M.E. Welland, J. Phys, Condens. Matter 215902, 215902 (2009)CrossRefGoogle Scholar
  22. 22.
    N.B. Chaure, A.K. Ray, R. Capan, Semicond. Sci. Technol. 20, 788 (2005)CrossRefGoogle Scholar
  23. 23.
    G. Liu, H.G. Yang, C. Sun, L. Cheng, L. Wang, G.Q.(Max) Lu, H.-M. Cheng, CrystEngComm 11, 2677 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Fu, S. Cao, J. Yu, J. Low, Y. Lei, Dalton Trans. 43, 9158 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Yu, G. Wang, B. Cheng, M. Zhou, Appl. Catal. B Environ 69, 171 (2007)CrossRefGoogle Scholar
  26. 26.
    J.A.T.A.N.R. Mathews, E.R. Morales, M.A. Corteś-Jacome, Sol. Energy 83, 1499 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Kumar, S. Mondal, K.S.R.K. Rao, AIP Adv. 5, 117122 (2015)CrossRefGoogle Scholar
  28. 28.
    W. Yang, C.A. Wolden, Thin Solid Films 515, 1708 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Tatarogˇlu, Ş. Altındal, M.M. Bülbül, Micro. Eng. 81, 140 (2005)CrossRefGoogle Scholar
  30. 30.
    A. Ghosh, Phys. Rev. B 41, 1479 (1990)CrossRefGoogle Scholar
  31. 31.
    A. Dakhel, J. Alloys Compd. 422, 1 (2006)CrossRefGoogle Scholar
  32. 32.
    Y. Seo, S. Lee, I. An, C. Song, H. Jeong, Semicond. Sci. Technol. 24, 115016 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Arvind Kumar
    • 1
  • Sandip Mondal
    • 1
  • K. S. R. Koteswara Rao
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations