Skip to main content
Log in

Realization of polarization-angle-independent fishnet-based waveguide metamaterial comprised of octagon shaped resonators with sensor and absorber applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new fishnet-based waveguide metamaterial structure for the microwave region is introduced and investigated both numerically and experimentally. The proposed model is designed and fabricated on both sides of the substrate and exhibits strong metamaterial behavior (such as negative material parameters: i.e. negative permittivity, negative permeability, and negative index of refraction) at the resonance. Only one single slab is used in the simulation and experiment which provides a reduction in the number of the required samples with respect to its free-space and/or waveguide counterparts. This means that a small-sized metamaterial structure is simulated, measured, and characterized by placing the sample in the waveguide. The effective medium theory is employed for the characterization of the structure and the left-handed region is identified. The measured results are in good agreement with the simulated ones which show that the proposed structure operates well in terms of metamaterial behavior and can be used in waveguide miniaturization and waveguide-based applications such as antennas, filters, sensors, absorbers, imaging systems, and so on. To validate this claim, sensor and absorber applications are selected and the simulation results show that the proposed sensor and absorbers devices operate well under the defined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  2. F. Capolino, Applications of Metamaterials (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  3. S. Zhang, W. Fan, K.J. Malloy, S.R. Brueck, N.C. Panoiu, R.M. Osgood, Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005)

    Article  Google Scholar 

  4. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, A low-loss negative index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006)

    Article  Google Scholar 

  5. U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V.P. Drachev, V.M. Shalaev, Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt. Lett. 32, 1671–1673 (2007)

    Article  Google Scholar 

  6. M. Kafesaki, I. Tsiapa, N. Katsarakis, Th Koschny, C.M. Soukoulis, E.N. Economou, Left-handed metamaterials: the fishnet structure and its variations. Phys. Rev. B 75, 235114 (2007)

    Article  Google Scholar 

  7. D. Kwon, D.H. Werner, A.V. Kildishev, V.M. Shalaev, Near-infrared metamaterials with dual-band negative-index characteristics. Opt. Express 15, 1647–1652 (2007)

    Article  Google Scholar 

  8. K.B. Alici, E. Ozbay, A planar metamaterial: Polarization independent fishnet structure. Photon Nanostruct Fundam Appl 6, 102–107 (2008)

    Article  Google Scholar 

  9. C. Garcia-Meca, R. Ortuno, F.J. Rodriguez-Fortuno, J. Marti, A. Martinez, Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Opt. Lett. 34, 1603–1605 (2009)

    Article  Google Scholar 

  10. P. Ding, E.J. Liang, W.Q. Hu, L. Zhang, Q. Zhou, Q.Z. Xue, Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure. Photon Nanostruct Fundam Appl 7, 92–100 (2009)

    Article  Google Scholar 

  11. C. Sabah, H.G. Roskos, Numerical and experimental investigation of fishnet-based metamaterial in a X-band waveguide. J. Phys. D Appl. Phys. 44, 255101 (2011)

    Article  Google Scholar 

  12. C. Sabah, H.G. Roskos, Dual-band polarization-independent sub-terahertz fishnet metamaterial. Curr. Appl. Phys. 12, 443–450 (2012)

    Article  Google Scholar 

  13. C. Sabah, F. Urbani, Experimental analysis of Λ-shaped magnetic resonator for mu-negative metamaterials. Opt. Commun. 294, 409–413 (2013)

    Article  Google Scholar 

  14. C. Sabah, Multiband metamaterials based on multiple concentric open-ring resonators topology. IEEE J Sel Topics Quantum Electron. 19, 8500808.1–8500808.8 (2013)

    Article  Google Scholar 

  15. C. Sabah, Microwave response of octagon-shaped parallel plates: low-loss metamaterial. Opt. Commun. 285, 4549–4552 (2012)

    Article  Google Scholar 

  16. A.M. Nicolson, G. Ross, Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Article  Google Scholar 

  17. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)

    Article  Google Scholar 

  18. A. Yilmaz, C. Sabah, Diamond-shaped hole array in double-layer metal sheets for negative index of refraction. J. Electromagn. Waves Appl. 27, 413–420 (2013)

    Article  Google Scholar 

  19. C. Sabah, S. Uckun, Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters. Prog. Electromagn. Res. 91, 349–364 (2009)

    Article  Google Scholar 

  20. V.V. Varadan, R. Ro, Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality. IEEE Trans. Microw. Theory Tech. 55, 2224–2230 (2007)

    Article  Google Scholar 

  21. T.M. Grzegorczyk, J.A. Kong, R. Lixin, Refraction experiments in waveguide environments, in Metamaterials: Physics and Engineering Explorations, ed. by N. Engheta, R.W. Ziolkowski (Wiley, Hoboken, 2006)

    Google Scholar 

  22. C. Sabah, Novel, dual band, single and double negative metamaterials: nonconcentric delta loop resonators. Prog. Electromagn. Res. B 25, 225–239 (2010)

    Article  Google Scholar 

  23. K. Song, X. Zhao, H. Ma, B. Liu, Multi-band optical metamaterials based on random dendritic cells. J. Mater. Sci.: Mater. Electron. 24, 4888–4892 (2013)

    Google Scholar 

  24. H. Zhou, C. Wang, H. Peng, A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure. J. Mater. Sci.: Mater. Electron. (2015). doi:10.1007/s10854-015-4056-2

    Google Scholar 

  25. Z. Huang, J. Xue, Y. Hou, J. Chu, D.H. Zhang, Optical magnetic response from parallel plate metamaterials. Phys. Rev. B. 74, 193105.1–193105.4 (2006)

    Google Scholar 

  26. C. Sabah, Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators. Appl. Phys. A Mater. Sci. Process. 108, 457–463 (2012)

    Article  Google Scholar 

  27. C. Sabah, H.G. Roskos, Broadside-coupled triangular split-ring-resonators for terahertz sensing. Eur. Phys. J. Appl. Phys. 61, 30402.1–30402.7 (2013)

    Article  Google Scholar 

  28. C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt. Commun. 322, 137–142 (2014)

    Article  Google Scholar 

  29. F. Dincer, M. Karaaslan, E. Unal, C. Sabah, Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-star strip configuration. Prog. Electromagn. Res. 141, 219–231 (2013)

    Article  Google Scholar 

  30. F. Dincer, O. Akgol, M. Karaaslan, E. Unal, C. Sabah, Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Prog. Electromagn. Res. 144, 93–101 (2014)

    Article  Google Scholar 

  31. F. Dincer, M. Karaaslan, E. Unal, K. Delihacioglu, C. Sabah, Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators. Prog. Electromagn. Res. 144, 123–132 (2014)

    Article  Google Scholar 

  32. F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, C. Sabah, Polarization and angle independent perfect metamaterial absorber based on discontinuous cross-wire-strips. J. Electromagn. Waves Appl. 28, 741–751 (2014)

    Article  Google Scholar 

  33. C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies. Radio Sci. 49, 306–314 (2014)

    Article  Google Scholar 

  34. E. Unal, F. Dincer, E. Tetik, M. Karaaslan, M. Bakir, C. Sabah, Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. J. Mater. Sci.: Mater. Electron. 26, 9735–9740 (2015)

    Google Scholar 

Download references

Acknowledgments

The work reported here was carried out at Middle East Technical University—Northern Cyprus Campus (METU—NCC) and supported by METU—NCC under the Grant Number of BAP-FEN-15-D-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumali Sabah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabah, C. Realization of polarization-angle-independent fishnet-based waveguide metamaterial comprised of octagon shaped resonators with sensor and absorber applications. J Mater Sci: Mater Electron 27, 4777–4787 (2016). https://doi.org/10.1007/s10854-016-4358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4358-z

Keywords

Navigation