Skip to main content
Log in

Synthesis and highly efficient defect-related UV-blue band luminescence of KY3F10 nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Defect-related luminescence, with advantages such as emission color tunability, low cost and low toxicity compared to ions activated luminescence, is a captivating route to develop luminescent materials. Herein, we synthesized KY3F10 phosphors by hydrothermal technique with citric acid as the chelator. SEM images indicate that the phosphors are of nanoscale and excess CA addition results in particle agglomeration. The undoped nanocrystals exhibit UV-blue band emission centered at 360 nm originated from the defects under 300 nm excitation. And the most efficient luminescence with internal quantum efficiency as high as 23.73 % has been obtained from the sample whose chelator consumption in the preparation procedure is half that of rare earth. This indicates that the lanthanide-free KY3F10 nanocrystals are highly efficient UV-blue-emitting phosphors. And just by doping with 3 mol% Sm3+, the emission color could be tuned to white as a combinative effect of blue band emission from defects and line emission from Sm3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Sudheendra, G.K. Das, C. Li, D. Stark, J. Cena, S. Cherry, I.M. Kennedy, Chem. Mater. 26, 1881 (2014)

    Article  Google Scholar 

  2. X. Li, Y. Zhang, D. Geng, J. Lian, G. Zhang, Z. Hou, J. Lin, J. Mater. Chem. C 2, 9924 (2014)

    Article  Google Scholar 

  3. T. Yanagida, N. Kawaguchi, Y. Fujimoto, Y. Yokota, A. Yamazaki, K. Watanabe, K. Kamada, A. Yoshikawa, V. Chani, Radiat. Meas. 46, 1708 (2011)

    Article  Google Scholar 

  4. H. Xin, L. Lin, J. Wu, B. Yan, J. Mater. Sci.: Mater. Electron. 22, 1330 (2014)

    Google Scholar 

  5. L. Meng, L. Liang, Y. Wen, J. Mater. Sci.: Mater. Electron. 25, 2676 (2014)

    Google Scholar 

  6. S. Saha, S. Das, D. Sen, U.K. Ghorai, N. Mazumder, B.K. Gupta, K.K. Chattopadhyay, J. Mater. Chem. C 3, 6786 (2015)

    Article  Google Scholar 

  7. H. Zeng, X. Ning, X. Li, Phys. Chem. Chem. Phys. 17, 19637 (2015)

    Article  Google Scholar 

  8. C. Zhang, J. Lin, Chem. Soc. Rev. 41, 7938 (2012)

    Article  Google Scholar 

  9. Q. Li, G.T. Wang, Nano Lett. 10, 1554 (2010)

    Article  Google Scholar 

  10. X. Xiang, X.T. Zu, S. Zhu, T.H. Ding, L.M. Wang, Opt. Mater. 28, 930 (2006)

    Article  Google Scholar 

  11. X. Zhang, Z. Quan, J. Yang, P. Yang, H. Lian, J. Lin, Nanotechnology 19, 075603 (2008)

    Article  Google Scholar 

  12. A. Rapaport, J. Milliez, F. SzipÖcs, M. Bass, A. Cassanho, H. Jenssen, Appl. Opt. 43, 6477 (2004)

    Article  Google Scholar 

  13. A. Braud, P.Y. Tigreat, J.L. Doualan, R. Moncorgé, Appl. Phys. B 72, 909 (2014)

    Article  Google Scholar 

  14. V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, J.A. Capobianco, J. Mater. Chem. 19, 3149 (2009)

    Article  Google Scholar 

  15. S. Chen, L. Zhang, Y. Wu, G. Zhou, P. Liu, Y. Yang, S. Wang, Mater. Lett. 106, 326 (2013)

    Article  Google Scholar 

  16. E.Y. Tselishcheva, A.K. Naumov, D.I. Tselishchev, O.A. Morozov, S.L. Korableva, Opt. Spectrosc. 114, 822 (2013)

    Article  Google Scholar 

  17. C. Li, Z. Xu, D. Yang, Z. Cheng, Z. Hou, P.A. Ma, H. Lian, J. Lin, CrystEngComm 14, 670 (2012)

    Article  Google Scholar 

  18. C. Pandurangappa, B.N. Lakshminarasappa, B.M. Nagabhushana, J. Alloys Compd. 489, 592 (2010)

    Article  Google Scholar 

  19. W. Wang, X. Liu, J. Zhang, Y. Ji, N. Jiang, B. Ma, X. Wang, L. Liu, Inorg. Chem. Commun. 33, 165 (2013)

    Article  Google Scholar 

  20. M. True, Y. Chen, M. Kirm, S. Vielhauer, G. Zimmerer, J. Lumin. 124, 279 (2007)

    Article  Google Scholar 

  21. Y. Ji, X. Liu, B. Li, J. Zhang, X. Wang, J. Lumin. 146, 150 (2014)

    Article  Google Scholar 

  22. W. Hayes, I.B. Oven, G.I. Pilipenko, J. Phys. C: Solid State Phys. 9, 407 (1975)

    Article  Google Scholar 

  23. T. Sidler, J.P. Pellaux, A. Nouailhat, M.A. Aegerter, Solid State Commun. 13, 479 (1973)

    Article  Google Scholar 

  24. W. Dreybrodt, D. Silber, Phys. Status Solidi B 16, 215 (1966)

    Article  Google Scholar 

  25. Z. Xia, R. Liu, K. Huang, V. Drozd, J. Mater. Chem. 22, 15183 (2012)

    Article  Google Scholar 

  26. M. Runowski, S. Lis, J. Alloys Compd. 597, 63 (2014)

    Article  Google Scholar 

  27. Y. Ding, L. Liang, M. Li, D. He, L. Xu, P. Wang, X. Yu, Nanoscale Res. Lett. 6, 119 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51472263 and 51572175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayue Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Xu, J. Synthesis and highly efficient defect-related UV-blue band luminescence of KY3F10 nanocrystals. J Mater Sci: Mater Electron 27, 4372–4377 (2016). https://doi.org/10.1007/s10854-016-4306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4306-y

Keywords

Navigation