Skip to main content
Log in

Organometallic hybrid perovskites: structural, optical characteristic and application in Schottky diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CH3NH3PbI3 thin film was deposited by a dual-source evaporation system under high vacuum (~10−4 Pa). The crystallographic phase of the thin film was determined by X-ray diffraction and its perovskite structure was confirmed. The crystal of annealed perovskite film was extremely smooth and significantly larger than that of as-deposited. The optical property of the thin film was investigated in the spectral range 300–1800 nm. By analyzing the absorption coefficient (α), the optical band gap (1.58 eV) and Urbach energy (0.082 eV) were revealed. The Al/CH3NH3PbI3/ITO Schottky diode was fabricated in order to explore the potential applications of CH3NH3PbI3. The basic device parameters, barrier height and ideality factor were determined by the current–voltage (I–V) measurement. It can be found that the charge transport was governed by space-charge-limited current mechanism by studying the forward bias characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.D. Stranks, G.E. Eperon, G. Grancini et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)

    Article  Google Scholar 

  2. G. Xing, N. Mathews, S. Sun et al., Long-range balanced electron and hole transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)

    Article  Google Scholar 

  3. J. Huang, K. Jiang, X. Cui et al., Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci. Rep. 5, 15889 (2015). doi:10.1038/srep15889

    Article  Google Scholar 

  4. H. Zhou, Q. Chen, G. Li et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)

    Article  Google Scholar 

  5. D. Yang, R. Yang, J. Zhang et al., High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8(11), 3208–3214 (2015)

    Article  Google Scholar 

  6. Best Research-Cell Efficiencies, NREL. www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed July 2015

  7. Z.K. Tan, R.S. Moghaddam, M.L. Lai et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014)

    Article  Google Scholar 

  8. Y. Ling, Z. Yuan, Y. Tian et al., Bright light emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28(2), 305–311 (2016)

    Article  Google Scholar 

  9. C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)

    Article  Google Scholar 

  10. J.H. Heo, S.H. Im, J.H. Noh et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486–491 (2013)

    Article  Google Scholar 

  11. W. Nie, H. Tsai, R. Asadpour et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015)

    Article  Google Scholar 

  12. D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2014)

    Article  Google Scholar 

  13. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)

    Article  Google Scholar 

  14. A.T. Barrows, A.J. Pearson, C.K. Kwak et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944–2950 (2014)

    Article  Google Scholar 

  15. B. Conings et al., Perovskite-based hybrid solar cells exceeding 10 % efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014)

    Article  Google Scholar 

  16. X.H. Zhu, B.J. Zhao, S.F. Zhu et al., Synthesis and characterization of PbI2 polycrystals. Cryst. Res. Technol. 41(3), 239–242 (2006)

    Article  Google Scholar 

  17. A.A.M. Farag, S.M.S. Haggag, M.E. Mahmoud, Spectral–optical–electrical–thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex. Spectrochim. Acta A 82, 467 (2011)

    Article  Google Scholar 

  18. A.A.M. Farag, I.S. Yahia, Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Opt. Commun. 283, 4310 (2010)

    Article  Google Scholar 

  19. M.M.E. Nahass, A.M. Farag et al., Dispersion studies and electronic transitions in nickel phthalocyanine thin films. Opt. Laser Technol. 37, 513–523 (2005)

    Article  Google Scholar 

  20. S. Agilan, D. Mangalaraj, S.K. Narayandass et al., Structural and optical characterization of CuInSe2 films deposited by hot wall vacuum evaporation method. Vacuum 81, 813–818 (2007)

    Article  Google Scholar 

  21. N. Tugluoglu, B. Barıs, H. Gurel et al., Investigation of optical band gap and device parameters of rubrene thin film prepared using spin coating technique. J. Alloys Compd. 582, 696–702 (2014)

    Article  Google Scholar 

  22. G. Chen, X. Zhang, B. Wang et al., Optical absorption edge characteristics of cubic boron nitride thin films. Appl. Phys. Lett. 75(1), 10–12 (1999)

    Article  Google Scholar 

  23. V.B. Shmagin, K.E. Kudryavtsev, D.V. Shengurov et al., Urbach absorption edge in epitaxial erbium-doped silicon. J. Appl. Phys. 117(5), 055303 (2015)

    Article  Google Scholar 

  24. C. Arbizzani, M. Mastragostino, B. Scrosati, Handbook of Organic Conductive Molecules and Polymers, Volume 4: Conductive Polymers: Transport, Photophysics and Applications (1997), pp. 595–619

  25. J.A. Banday, F.A. Mir, M.A. Qurishi et al., Isolation, structural, spectral, and thermal studies of imperatorin micro-crystals from Prangos pabularia. J. Therm. Anal. Calorim. 112(3), 1165–1170 (2013)

    Article  Google Scholar 

  26. S. De Wolf, J. Holovsky, S.J. Moon et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014)

    Article  Google Scholar 

  27. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)

    Google Scholar 

  28. Ö. Güllü, A. Türüt, S. Asubay, Electrical characterization of organic-on-inorganic semiconductor Schottky structures. J. Phys. Condens. Matter 20(4), 045215 (2008)

    Article  Google Scholar 

  29. A.R. Vearey-Roberts, D.A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers. Appl. Phys. Lett. 86, 072105 (2005)

    Article  Google Scholar 

  30. J.A. Banday, F.A. Mir, H.A. Kanth, G.M. Bhat, Structural and optical properties of Heraclenin; a bio-organic molecule from Prangos Pabularia. Opt. Int. J. Light Electron. Opt. 124(20), 4655–4658 (2013)

    Article  Google Scholar 

  31. D. Ray, P.K. Bharadwaj, A coumarin-derived fluorescence probe selective for magnesium. Inorg. Chem. 47, 2252–2254 (2008)

    Article  Google Scholar 

  32. F.A. Mir, S.U. Rehman, T.A. Mir et al., Structural, optical and transport properties of 4-hydroxy coumarin: an organic Schottky diode. Appl. Phys. A 116(3), 1017–1023 (2014)

    Article  Google Scholar 

  33. Ö. Güllü, S. Asubay, Ş. Aydoğan et al., Electrical characterization of the Al/new fuchsin/n-Si organic-modified device. Phys. E 42(5), 1411–1416 (2010)

    Article  Google Scholar 

  34. M.E. Aydın, A. Türüt, The electrical characteristics of Sn/methyl-red/p-type Si/Al contacts. Microelectron. Eng. 84(12), 2875–2882 (2007)

    Article  Google Scholar 

  35. S.M. El-Sayed, H.M.A. Hamid, R.M. Radwan, Effect of electron beam irradiation on the conduction phenomena of unplasticized PVC/PVA copolymer. Radiat. Phys. Chem. 69(4), 339–345 (2004)

    Article  Google Scholar 

  36. Z. Çaldıran, A.R. Deniz, Ş. Aydoğan et al., The barrier height enhancement of the Au/n-Si/Al Schottky barrier diode by electrochemically formed an organic Anthracene layer on n-Si. Superlattices Microstruct. 56, 45–54 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Funding for the development project of Beijing Municipal Education Commission of science and technology (Grant No. KZ201410005008), Natural Science Foundation of Beijing City (No. 4102014), and China Postdoctoral Science Foundation (No. 2015M570020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Deng, J., Gao, H. et al. Organometallic hybrid perovskites: structural, optical characteristic and application in Schottky diode. J Mater Sci: Mater Electron 27, 4275–4280 (2016). https://doi.org/10.1007/s10854-016-4293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4293-z

Keywords

Navigation