Skip to main content

Advertisement

Log in

Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrochemical properties of graphene can be significantly enhanced due to the incorporating of hetero-atoms into the graphene. In this article Crumpled-like TiO2–Pt/graphene nanocomposite from graphene oxide (GO), titanium (III) chloride (TiCl3) and Hydrogen hexa chloro palatinate (H2PtCl6) was synthesized via a simple reflux strategy and employed as a simple capacitor electrode material. The nanocomposite was characterized by XRD, XPS, FESEM, HRTEM and the electrochemical properties were investigated by cyclic voltammetry (CV). Electrochemical characterization for introduced nanocomposite indicated that the corresponding specific capacitance is 160 F/g (at 5 mV/s) with good stability. The high electrochemical performance is recognized to the presence of Pt nanoparticles on the nanocomposite and graphene distinct characteristics. To the best of our knowledge this is the first report on TiO2–Pt/graphene nanocomposite as an electrical double layer capacitor material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.K. Ghouri, M.S. Akhtar, A. Zahoor, N.A.M. Barakat, W. Han, M. Park, B. Pant, P.S. Saud, C.H. Lee, H.Y. Kim, High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods. J. Alloy Compd. 642, 210–215 (2015)

    Article  Google Scholar 

  2. Z.K. Ghouri, N.A.M. Barakat, M. Park, B.-S. Kim, H.Y. Kim, Synthesis and characterization of Co/SrCO3 nanorods-decorated carbon nanofibers as novel electrocatalyst for methanol oxidation in alkaline medium. Ceram. Int. 41, 6575–6582 (2015)

    Article  Google Scholar 

  3. Z.K. Ghouri, N.A.M. Barakat, M. Obaid, J.H. Lee, H.Y. Kim, Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium. Ceram. Int. 41, 2271–2278 (2015)

    Article  Google Scholar 

  4. Z.K. Ghouri, N.A. Barakat, A.-M. Alam, M. Park, T.H. Han, H.Y. Kim, Facile synthesis of Fe/CeO2-doped CNFs and their capacitance behavior. Int. J. Electrochem. Sci. 10, 2064–2071 (2015)

    Google Scholar 

  5. Z.K. Ghouri, N.A.M. Barakat, H.Y. Kim, Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoχCuy alloy nanoparticles-decorated CNFs. Sci. Rep. 5, 16695 (2015)

    Article  Google Scholar 

  6. K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, S.H. Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes. J. Power Sour. 103, 305–309 (2002)

    Article  Google Scholar 

  7. A. White, R. Slade, Polymer electrodes doped with heteropolymetallates and their use within solid-state supercapacitors. Synth. Met. 139, 123–131 (2003)

    Article  Google Scholar 

  8. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  9. B.E. Conway, Electrochemical Capacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Press, New York, 1999)

    Google Scholar 

  10. Z.K. Ghouri, N.A. Barakat, H.Y. Kim, Synthesis and electrochemical properties of MnO2 and Co-decorated graphene as novel nanocomposite for electrochemical super capacitors application. Energy Environ. Focus 4, 34–39 (2015)

    Article  Google Scholar 

  11. C.-M. Yang, Y.-J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 129, 20–21 (2007)

    Article  Google Scholar 

  12. R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  13. B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539–1548 (1991)

    Article  Google Scholar 

  14. B. Babakhani, D.G. Ivey, Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J. Power Sour. 195, 2110–2117 (2010)

    Article  Google Scholar 

  15. J.Y. Lee, K. Liang, K.H. An, Y.H. Lee, Synth. Met. 150, 153–157 (2005)

    Article  Google Scholar 

  16. E. Frackowiak, F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40, 1775–1787 (2002)

    Article  Google Scholar 

  17. P. Novák, K. Müller, K. Santhanam, O. Haas, Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–282 (1997)

    Article  Google Scholar 

  18. Y. Jeong, A. Manthiram, Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. J. Electrochem. Soc. 148, A189–A193 (2001)

    Article  Google Scholar 

  19. L. Cao, L.-B. Kong, Y.-Y. Liang, H.-L. Li, Preparation of novel nano-composite Ni(OH)2/USY material and its application for electrochemical capacitance storage. Chem. Commun. 14, 1646–1647 (2004)

    Article  Google Scholar 

  20. H. Nakagawa, A. Shudo, K. Miura, High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes. J. Electrochem. Soc. 147, 38–42 (2000)

    Article  Google Scholar 

  21. X. Fan, B.D. Phebus, L. Li, S. Chen, Graphene-based composites for supercapacitor electrodes. Sci. Adv. Mater. 7, 1916–1944 (2015)

    Article  Google Scholar 

  22. K. Zhou, W. Zhou, Y. Du, X. Liu, Y. Sang, W. Li, J. Lu, H. Liu, S. Chen, High-performance supercapacitors based on nitrogen-doped porous carbon from surplus sludge. Sci. Adv. Mater. 7, 571–578 (2015)

    Article  Google Scholar 

  23. M. Karthik, E. Redondo, E. Goikolea, V. Roddatis, R. Mysyk, Large-scale hydrothermal synthesis of hierarchical mesoporous carbon for high-performance supercapacitors. Energy Environ. Focus 4, 201–208 (2015)

    Article  Google Scholar 

  24. F. Li, L. Wang, Activated carbon materials prepared from pine branches for supercapacitors. Energy Environ. Focus 4, 24–27 (2015)

    Article  Google Scholar 

  25. W. Yu, W. Lin, W. Ouyang, F. Zeng, J. Yan, D. Yuan, Graphitic mesoporous carbon prepared from metal–organic frameworks for supercapacitor. Energy Environ. Focus 4, 8–11 (2015)

    Article  Google Scholar 

  26. Z.-Y. Li, M.S. Akhtar, O.-B. Yang, Supercapacitors with ultrahigh energy density based on mesoporous carbon nanofibers: enhanced double-layer electrochemical properties. J. Alloy Compd. 653, 212–218 (2015)

    Article  Google Scholar 

  27. Y.K. Zhou, B.L. He, W.J. Zhou, H.L. Li, Preparation and electrochemistry of SWNT/PANI composite films for electrochemical capacitors. J. Electrochem. Soc. 151, A1052–A1057 (2004). doi:10.1149/1.1758812

    Google Scholar 

  28. J.W. Weidner, V. Srinivasan, J. Electrochem. Soc. L210, 144 (1999)

    Google Scholar 

  29. T.W. Tsou, C.C. Hu, Electrochem. Commun. 4, 105 (2002)

    Article  Google Scholar 

  30. J. Zheng, P. Cygan, T. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995)

    Article  Google Scholar 

  31. I.-H. Kim, K.-B. Kim, Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism. J. Electrochem. Soc. 151, E7–E13 (2004)

    Article  Google Scholar 

  32. R.K. Sharma, H.-S. Oh, Y.-G. Shul, H. Kim, Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor. J. Power Sour. 173, 1024–1028 (2007)

    Article  Google Scholar 

  33. M. Mastragostino, C. Arbizzani, F. Soavi, Conducting polymers as electrode materials in supercapacitors. Solid State Ion. 148, 493–498 (2002)

    Article  Google Scholar 

  34. F. Fusalba, P. Gouérec, D. Villers, D. Bélanger, Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J. Electrochem. Soc. 148, A1–A6 (2001)

    Article  Google Scholar 

  35. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, E. Frackowiak, Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett. 347, 36–40 (2001)

    Article  Google Scholar 

  36. V. Khomenko, C.O. Ania, E. Raymundo-Piñero, J.B. Parra, F. Béguin, The large electrochemical capacitance of micro porous doped carbon obtained by using a zeolite template. Adv. Funct. Mater. 17, 1828–1836 (2007)

    Article  Google Scholar 

  37. C. Portet, C. Largeot, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric duble-layercapacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008)

    Article  Google Scholar 

  38. E. Raymundo-Piñero, F. Leroux, F. Béguin, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 18, 1877–1882 (2006)

    Article  Google Scholar 

  39. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective super capacitor material of ultra high specific capacitances: spinel nickel cobalt it eaero gels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010)

    Article  Google Scholar 

  40. C.K. Chan, M. Kaempgen, J. Ma, Y. Cui, Gruner G Printable thin film super- capacitors using single-walled carbon nano tubes. Nano Lett. 9, 1872–1876 (2009)

    Article  Google Scholar 

  41. C. Ma, Y. Song, J. Shi, D. Zhang, M. Zhong, Q. Guo et al., Phenolic-based carbon nano fiber webs prepared by electrospinning for super capacitors. Mater. Lett. 76, 211–214 (2012)

    Article  Google Scholar 

  42. S. Xing, Q. Wang, Z. Ma, Y. Wu, Y. Gao, Synthesis of mesoporous α-Ni(OH)2 for high-performance super capacitors. Mater. Lett. 78, 99–101 (2012)

    Article  Google Scholar 

  43. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis characterization, properties, and applications. Small 7, 1876–1902 (2011)

    Article  Google Scholar 

  44. A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39, 507–514 (2001)

    Article  Google Scholar 

  45. X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012)

    Article  Google Scholar 

  46. H. Li, L. Zou, L. Pan, Z. Sun, Novel graphene-like electrodes for capacitive deionization. Environ. Sci. Technol. 44, 8692–8697 (2010)

    Article  Google Scholar 

  47. Z.K. Ghouri, N.A.M. Barakat, A.-M. Alam, M.S. Alsoufi, T.M. Bawazeer, A.F. Mohamed, H.Y. Kim, Synthesis and characterization of Nitrogen-doped & CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitors. Electrochim. Acta 184, 193–202 (2015)

    Article  Google Scholar 

  48. M.O.V. Georgakilas, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Chem. Rev. 11, 6156e6214 (2012)

    Google Scholar 

  49. Y. Zhu, L.H. Lu, F.J. Li, W. Zhuang, K.Y. Chan, X.H. Lu, J. Mater. Chem. 20, 7645–7651 (2010)

    Article  Google Scholar 

  50. T. Ioannides, X.E. Verykios, Charge transfer in metal catalysts supported on doped TiO2: a theoretical approach based on metal-semiconductor contact theory. J. Catal. 161, 560–569 (1996)

    Article  Google Scholar 

  51. Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, M.-H. Whangbo, Facile in situ synthesis of visible-light plasmonic photocatalysts M@ TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 21, 9079–9087 (2011)

    Article  Google Scholar 

  52. S.S. Mao, X. Chen, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  53. R. Offeman, W. Hummers, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  54. L. Zhang, Z. Xi, M. Xing, J. Zhang, Effects of the preparation order of the ternary P25/GO/Pt hybrid photocatalysts on hydrogen production. Int. J. Hydrogen Energy 38, 9169–9177 (2013)

    Article  Google Scholar 

  55. J.M. Syu, T.F. Yeh, C. Cheng, T.H. Chang, H.S. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20, 2255e62 (2010)

    Google Scholar 

  56. Z. Tang, Y.H. Zhang, X.Z. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials. ACS Nano 4, 7303e14 (2010)

    Google Scholar 

  57. L. Zou, L. Li, H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination. Water Res. 42, 2340–2348 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This Research was financially supported by National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2014R1A4A1008140) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2014R1A1A2008489).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasser A. M. Barakat or Hak Yong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghouri, Z.K., Barakat, N.A.M., Saud, P.S. et al. Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenes. J Mater Sci: Mater Electron 27, 3894–3900 (2016). https://doi.org/10.1007/s10854-015-4239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4239-x

Keywords

Navigation