Abstract
The electrochemical properties of graphene can be significantly enhanced due to the incorporating of hetero-atoms into the graphene. In this article Crumpled-like TiO2–Pt/graphene nanocomposite from graphene oxide (GO), titanium (III) chloride (TiCl3) and Hydrogen hexa chloro palatinate (H2PtCl6) was synthesized via a simple reflux strategy and employed as a simple capacitor electrode material. The nanocomposite was characterized by XRD, XPS, FESEM, HRTEM and the electrochemical properties were investigated by cyclic voltammetry (CV). Electrochemical characterization for introduced nanocomposite indicated that the corresponding specific capacitance is 160 F/g (at 5 mV/s) with good stability. The high electrochemical performance is recognized to the presence of Pt nanoparticles on the nanocomposite and graphene distinct characteristics. To the best of our knowledge this is the first report on TiO2–Pt/graphene nanocomposite as an electrical double layer capacitor material.
Similar content being viewed by others
References
Z.K. Ghouri, M.S. Akhtar, A. Zahoor, N.A.M. Barakat, W. Han, M. Park, B. Pant, P.S. Saud, C.H. Lee, H.Y. Kim, High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods. J. Alloy Compd. 642, 210–215 (2015)
Z.K. Ghouri, N.A.M. Barakat, M. Park, B.-S. Kim, H.Y. Kim, Synthesis and characterization of Co/SrCO3 nanorods-decorated carbon nanofibers as novel electrocatalyst for methanol oxidation in alkaline medium. Ceram. Int. 41, 6575–6582 (2015)
Z.K. Ghouri, N.A.M. Barakat, M. Obaid, J.H. Lee, H.Y. Kim, Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium. Ceram. Int. 41, 2271–2278 (2015)
Z.K. Ghouri, N.A. Barakat, A.-M. Alam, M. Park, T.H. Han, H.Y. Kim, Facile synthesis of Fe/CeO2-doped CNFs and their capacitance behavior. Int. J. Electrochem. Sci. 10, 2064–2071 (2015)
Z.K. Ghouri, N.A.M. Barakat, H.Y. Kim, Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoχCuy alloy nanoparticles-decorated CNFs. Sci. Rep. 5, 16695 (2015)
K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, S.H. Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes. J. Power Sour. 103, 305–309 (2002)
A. White, R. Slade, Polymer electrodes doped with heteropolymetallates and their use within solid-state supercapacitors. Synth. Met. 139, 123–131 (2003)
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)
B.E. Conway, Electrochemical Capacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Press, New York, 1999)
Z.K. Ghouri, N.A. Barakat, H.Y. Kim, Synthesis and electrochemical properties of MnO2 and Co-decorated graphene as novel nanocomposite for electrochemical super capacitors application. Energy Environ. Focus 4, 34–39 (2015)
C.-M. Yang, Y.-J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 129, 20–21 (2007)
R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)
B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539–1548 (1991)
B. Babakhani, D.G. Ivey, Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J. Power Sour. 195, 2110–2117 (2010)
J.Y. Lee, K. Liang, K.H. An, Y.H. Lee, Synth. Met. 150, 153–157 (2005)
E. Frackowiak, F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40, 1775–1787 (2002)
P. Novák, K. Müller, K. Santhanam, O. Haas, Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–282 (1997)
Y. Jeong, A. Manthiram, Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. J. Electrochem. Soc. 148, A189–A193 (2001)
L. Cao, L.-B. Kong, Y.-Y. Liang, H.-L. Li, Preparation of novel nano-composite Ni(OH)2/USY material and its application for electrochemical capacitance storage. Chem. Commun. 14, 1646–1647 (2004)
H. Nakagawa, A. Shudo, K. Miura, High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes. J. Electrochem. Soc. 147, 38–42 (2000)
X. Fan, B.D. Phebus, L. Li, S. Chen, Graphene-based composites for supercapacitor electrodes. Sci. Adv. Mater. 7, 1916–1944 (2015)
K. Zhou, W. Zhou, Y. Du, X. Liu, Y. Sang, W. Li, J. Lu, H. Liu, S. Chen, High-performance supercapacitors based on nitrogen-doped porous carbon from surplus sludge. Sci. Adv. Mater. 7, 571–578 (2015)
M. Karthik, E. Redondo, E. Goikolea, V. Roddatis, R. Mysyk, Large-scale hydrothermal synthesis of hierarchical mesoporous carbon for high-performance supercapacitors. Energy Environ. Focus 4, 201–208 (2015)
F. Li, L. Wang, Activated carbon materials prepared from pine branches for supercapacitors. Energy Environ. Focus 4, 24–27 (2015)
W. Yu, W. Lin, W. Ouyang, F. Zeng, J. Yan, D. Yuan, Graphitic mesoporous carbon prepared from metal–organic frameworks for supercapacitor. Energy Environ. Focus 4, 8–11 (2015)
Z.-Y. Li, M.S. Akhtar, O.-B. Yang, Supercapacitors with ultrahigh energy density based on mesoporous carbon nanofibers: enhanced double-layer electrochemical properties. J. Alloy Compd. 653, 212–218 (2015)
Y.K. Zhou, B.L. He, W.J. Zhou, H.L. Li, Preparation and electrochemistry of SWNT/PANI composite films for electrochemical capacitors. J. Electrochem. Soc. 151, A1052–A1057 (2004). doi:10.1149/1.1758812
J.W. Weidner, V. Srinivasan, J. Electrochem. Soc. L210, 144 (1999)
T.W. Tsou, C.C. Hu, Electrochem. Commun. 4, 105 (2002)
J. Zheng, P. Cygan, T. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995)
I.-H. Kim, K.-B. Kim, Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism. J. Electrochem. Soc. 151, E7–E13 (2004)
R.K. Sharma, H.-S. Oh, Y.-G. Shul, H. Kim, Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor. J. Power Sour. 173, 1024–1028 (2007)
M. Mastragostino, C. Arbizzani, F. Soavi, Conducting polymers as electrode materials in supercapacitors. Solid State Ion. 148, 493–498 (2002)
F. Fusalba, P. Gouérec, D. Villers, D. Bélanger, Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J. Electrochem. Soc. 148, A1–A6 (2001)
K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, E. Frackowiak, Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett. 347, 36–40 (2001)
V. Khomenko, C.O. Ania, E. Raymundo-Piñero, J.B. Parra, F. Béguin, The large electrochemical capacitance of micro porous doped carbon obtained by using a zeolite template. Adv. Funct. Mater. 17, 1828–1836 (2007)
C. Portet, C. Largeot, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric duble-layercapacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008)
E. Raymundo-Piñero, F. Leroux, F. Béguin, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 18, 1877–1882 (2006)
T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective super capacitor material of ultra high specific capacitances: spinel nickel cobalt it eaero gels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010)
C.K. Chan, M. Kaempgen, J. Ma, Y. Cui, Gruner G Printable thin film super- capacitors using single-walled carbon nano tubes. Nano Lett. 9, 1872–1876 (2009)
C. Ma, Y. Song, J. Shi, D. Zhang, M. Zhong, Q. Guo et al., Phenolic-based carbon nano fiber webs prepared by electrospinning for super capacitors. Mater. Lett. 76, 211–214 (2012)
S. Xing, Q. Wang, Z. Ma, Y. Wu, Y. Gao, Synthesis of mesoporous α-Ni(OH)2 for high-performance super capacitors. Mater. Lett. 78, 99–101 (2012)
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis characterization, properties, and applications. Small 7, 1876–1902 (2011)
A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39, 507–514 (2001)
X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012)
H. Li, L. Zou, L. Pan, Z. Sun, Novel graphene-like electrodes for capacitive deionization. Environ. Sci. Technol. 44, 8692–8697 (2010)
Z.K. Ghouri, N.A.M. Barakat, A.-M. Alam, M.S. Alsoufi, T.M. Bawazeer, A.F. Mohamed, H.Y. Kim, Synthesis and characterization of Nitrogen-doped & CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitors. Electrochim. Acta 184, 193–202 (2015)
M.O.V. Georgakilas, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Chem. Rev. 11, 6156e6214 (2012)
Y. Zhu, L.H. Lu, F.J. Li, W. Zhuang, K.Y. Chan, X.H. Lu, J. Mater. Chem. 20, 7645–7651 (2010)
T. Ioannides, X.E. Verykios, Charge transfer in metal catalysts supported on doped TiO2: a theoretical approach based on metal-semiconductor contact theory. J. Catal. 161, 560–569 (1996)
Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, M.-H. Whangbo, Facile in situ synthesis of visible-light plasmonic photocatalysts M@ TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 21, 9079–9087 (2011)
S.S. Mao, X. Chen, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)
R. Offeman, W. Hummers, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)
L. Zhang, Z. Xi, M. Xing, J. Zhang, Effects of the preparation order of the ternary P25/GO/Pt hybrid photocatalysts on hydrogen production. Int. J. Hydrogen Energy 38, 9169–9177 (2013)
J.M. Syu, T.F. Yeh, C. Cheng, T.H. Chang, H.S. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20, 2255e62 (2010)
Z. Tang, Y.H. Zhang, X.Z. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials. ACS Nano 4, 7303e14 (2010)
L. Zou, L. Li, H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination. Water Res. 42, 2340–2348 (2008)
Acknowledgments
This Research was financially supported by National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2014R1A4A1008140) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2014R1A1A2008489).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Ghouri, Z.K., Barakat, N.A.M., Saud, P.S. et al. Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenes. J Mater Sci: Mater Electron 27, 3894–3900 (2016). https://doi.org/10.1007/s10854-015-4239-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-015-4239-x