Skip to main content
Log in

CdSe quantum dot/AlOx based non-volatile resistive memory

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We present an all-solution processed bipolar non-volatile resistive memory device with CdSe quantum dot/metal–metal oxide/quantum dot structure. The two terminal device exhibits excellent switching characteristics with ON/OFF ratio >104. The device maintained its state even after removal of the bias voltage. The switching time is around 14 ns. Device did not show degradation after 4000 s retention test. The memory functionality was consistent even after multiple cycles of operation (100,000) and the device is reproducible. The switching mechanism is discussed on the basis of charge trapping in quantum dots with metal oxide serving as the barrier. The mechanism is supported by observation of variation in capacitance–frequency measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  Google Scholar 

  2. G.I. Meijer, Science 319, 1625 (2008)

    Article  Google Scholar 

  3. Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Lett. 9, 1636 (2009)

    Article  Google Scholar 

  4. S.H. Jo, W. Lu, Nano Lett. 8, 392 (2008)

    Article  Google Scholar 

  5. H. Silva, H.L. Gomes, Yu.G. Pogorelov, P. Stallinga, D.M. de Leeuw, P. Araujo, J.B. Sousa, S.C.J. Meskers, G. Kakazei, S. Cardoso, P.P. Freitas, Appl. Phys. Lett. 94, 202107 (2009)

    Article  Google Scholar 

  6. Y. Yang, J. Ouyang, L. Ma, R.J. Tseng, C.-W. Chu, Adv. Funct. Mater. 16, 1001 (2006)

    Article  Google Scholar 

  7. J.-G. Park, W.-S. Nam, S.-H. Seo, Y.-G. Kim, Y.-H. Oh, G.-S. Lee, U.-G. Paik, Nano Lett. 9, 1713 (2009)

    Article  Google Scholar 

  8. L.P. Ma, J. Liu, Y. Yang, Appl. Phys. Lett. 80, 2997 (2002)

    Article  Google Scholar 

  9. J.C. Scott, L.D. Bozano, Adv. Mater. 19, 1452 (2007)

    Article  Google Scholar 

  10. L.D. Bozano, B.W. Kean, V.R. Deline, J.R. Salem, J.C. Scott, Appl. Phys. Lett. 84, 607 (2004)

    Article  Google Scholar 

  11. I. Amlani, A.O. Orlov, G. Toth, G.H. Bernstein, C.S. Lent, G.L. Snider, Science 284, 289 (1999)

    Article  Google Scholar 

  12. S. Ma, Z. Chen, H. Sun, N.K. Dutta, Opt. Express 18, 6417 (2010)

    Article  Google Scholar 

  13. S.A. Ng, K.A. Razak, K.Y. Cheong, K.C. Aw, J. Mater. Sci. Mater. Electron. 26, 6484 (2015)

    Article  Google Scholar 

  14. M.D. Fischbein, M. Drndic, Appl. Phys. Lett. 86, 193106 (2005)

    Article  Google Scholar 

  15. H. Pettersson, L. Baath, N. Carlsson, W. Seifert, L. Samuelson, Appl. Phys. Lett. 79, 78 (2001)

    Article  Google Scholar 

  16. E.S. Kannan, G.-H. Kim, D.A. Ritchie, Appl. Phys. Lett. 95, 143506 (2009)

    Article  Google Scholar 

  17. M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, Appl. Phys. Lett. 92, 092108 (2008)

    Article  Google Scholar 

  18. A. Marent, M. Geller, A. Schliwa, D. Reise, K. Potschke, D. Bimberg, N. Akcay, N. Oncan, Appl. Phys. Lett. 91, 242109 (2007)

    Article  Google Scholar 

  19. V. Kannan, J.K. Rhee, Appl. Phys. Lett. 99, 143504 (2011)

    Article  Google Scholar 

  20. V. Kannan, J.K. Rhee, J. Appl. Phys. 110, 074505 (2011)

    Article  Google Scholar 

  21. V. Kannan, J.K. Rhee, Phys. Chem. Chem. Phys. 15, 12762 (2013)

    Article  Google Scholar 

  22. L. Jdira, P. Liljeroth, E. Stoffels, D. Vanmaekelbergh, S. Speller, Phys. Rev. B 73, 115305 (2006)

    Article  Google Scholar 

  23. Y. Jo, B.U. Jang, J. Kim, D. Kim, H. Woo, I. Kim, W. Park, H. Im, H. Kim, J. Korean Phys. Soc. 64, 173 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2058814).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Kannan or Hyun-Seok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, V., Kim, HS. & Park, HC. CdSe quantum dot/AlOx based non-volatile resistive memory. J Mater Sci: Mater Electron 27, 3488–3492 (2016). https://doi.org/10.1007/s10854-015-4182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4182-x

Keywords

Navigation