A novel attempt for employing brannerite type copper vanadate as an anode for lithium rechargeable batteries

Abstract

Researchers are trying to find a novel anode material which is essential for taking lithium batteries to the next stage. Among the classical anodes, the conversion electrodes play a special role owing to their capability to provide a higher initial discharge capacity than the theoretical capacity. In this string, a new brannerite type copper vanadate conversion anode makes its impression in the lithium battery world. A poor capacity retention and voltage hysteresis exhibited by the typical conversion anode is the main obstruction to commercialize it for lithium batteries. But in the present work, a brannerite type copper vanadium oxide prepared by hydrothermal method has been used as a conversion anode for lithium batteries with approximately 100 % columbic efficiency and 70 % capacity retention. The low voltage hysteresis, better capacity retention, excellent columbic efficiency and better cyclability will make this material as a better choice to replace the conventional anode for lithium batteries in future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M.S. Park, S.B. Ma, D.J. Lee, D. Im, S.-G. Doo, O. Yamamoto, Sci. Rep. 4, 3815 (2014)

  2. 2.

    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 7, 513 (2014)

    Article  Google Scholar 

  3. 3.

    J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nat. Commun. 6, 6362 (2015)

    Article  Google Scholar 

  4. 4.

    P. Roy, S.K. Srivastava, J. Mater. Chem. A 3, 2454 (2015)

    Article  Google Scholar 

  5. 5.

    Y. Shi, J.-Z. Wang, S.-L. Chou, D. Wexler, H.-J. Li, K. Ozawa, H.-K. Liu, Y.-P. Wu, Nano Lett. 13, 4715 (2013)

    Article  Google Scholar 

  6. 6.

    S. Ni, J. Ma, J. Zhang, X. Yang, L. Zhang, J. Power Sources 282, 65 (2015)

    Article  Google Scholar 

  7. 7.

    M. Simões, Y. Surace, S. Yoon, C. Battaglia, S. Pokrant, A. Weidenkaff, J. Power Sources 291, 66 (2015)

    Article  Google Scholar 

  8. 8.

    C. Deng, S. Zhang, Z. Dong, Y. Shang, Nano Energy 4, 49 (2014)

    Article  Google Scholar 

  9. 9.

    Q. Van Overmeere, S. Ramanathan, Electrochim. Acta 150, 83 (2014)

    Article  Google Scholar 

  10. 10.

    H. Fei, Z. Li, W. Feng, X. Liu, Dalton Trans. 44, 146 (2015)

    Article  Google Scholar 

  11. 11.

    M. Inagaki, Solid State Ionics 156, 275 (2003)

    Article  Google Scholar 

  12. 12.

    C. Calvo, D. Manolescu, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 29, 1743 (1973)

    Article  Google Scholar 

  13. 13.

    R. Kozłowski, J. Ziółkowski, K. Mocała, J. Haber, J. Solid State Chem. 35, 1 (1980)

    Article  Google Scholar 

  14. 14.

    E. Andrukaitis, J.P. Cooper, J.H. Smit, J. Power Sources 54, 465 (1995)

    Article  Google Scholar 

  15. 15.

    F.L. Hess, R.C. Wells, J. Frankl. Inst. 189, 225 (1920)

    Article  Google Scholar 

  16. 16.

    R. Ruh, A.D. Wadsley, Acta Crystallogr. A 21, 974 (1966)

    Article  Google Scholar 

  17. 17.

    B. Napruszewska, P. Olszewski, J. Ziółkowski, J. Solid State Chem. 133, 545 (1997)

    Article  Google Scholar 

  18. 18.

    Y. Wei, C.W. Ryu, G. Chen, K.B. Kim, Electrochem. Solid-State Lett. 9, A487 (2006)

    Article  Google Scholar 

  19. 19.

    R. Gilligan, A.N. Nikoloski, Miner. Eng. 71, 34 (2015)

    Article  Google Scholar 

  20. 20.

    J. Thomas, Nat. Mater. 2, 705 (2003)

    Article  Google Scholar 

  21. 21.

    H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, J. Am. Chem. Soc. 130, 5361 (2008)

    Article  Google Scholar 

  22. 22.

    J.-M. Tarascon, P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, Nature 407, 496 (2000)

    Article  Google Scholar 

  23. 23.

    F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, V. Volkov, D. Su, B. Key, M.S. Whittingham, C.P. Grey, G.G. Amatucci, Y. Zhu, J. Graetz, J. Am. Chem. Soc. 133, 18828 (2011)

    Article  Google Scholar 

  24. 24.

    S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, Journal of Power Sources 257, 421 (2014)

  25. 25.

    Y. Abu-Lebdeh, I. Davidson (eds.), Nanotechnology for Lithium-Ion Batteries (Springer, Boston, MA, 2013)

  26. 26.

    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252 (2015)

    Article  Google Scholar 

  27. 27.

    S. Ni, J. Ma, J. Zhang, X. Yang, L. Zhang, Electrochemical Performance of Cobalt Vanadium Oxide/Natural Graphite as Anode for Lithium Ion Batteries (Elsevier, Amsterdam, 2015)

    Google Scholar 

  28. 28.

    F. Cheng, J. Chen, J. Mater. Chem. 21, 9841 (2011)

    Article  Google Scholar 

  29. 29.

    G. Yang, H. Cui, G. Yang, C. Wang, ACS Nano 8, 4474 (2014)

    Article  Google Scholar 

  30. 30.

    J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Adv. Mater. 22, E170 (2010)

    Article  Google Scholar 

  31. 31.

    S. Zhang, S. Peng, R. Hu, S. Ramakrishna, RSC Adv. 5, 20692 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors M. Sivakumar, Fu-Ming Wang gratefully acknowledge the Department of Science and Technology and National Science Committee under Indo-Taiwan collaborative research project for providing the financial support to do this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sivakumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prahasini, P., Subadevi, R., Wang, FM. et al. A novel attempt for employing brannerite type copper vanadate as an anode for lithium rechargeable batteries. J Mater Sci: Mater Electron 27, 3292–3297 (2016). https://doi.org/10.1007/s10854-015-4157-y

Download citation

Keywords

  • Vanadium Oxide
  • Vanadium Pentoxide
  • Brannerite
  • Columbic Efficiency
  • Voltage Hysteresis