Advertisement

A novel attempt for employing brannerite type copper vanadate as an anode for lithium rechargeable batteries

  • P. Prahasini
  • R. Subadevi
  • Fu-Ming Wang
  • Wei-Ren Liu
  • M. SivakumarEmail author
  • I. V. B. Maggay
Article

Abstract

Researchers are trying to find a novel anode material which is essential for taking lithium batteries to the next stage. Among the classical anodes, the conversion electrodes play a special role owing to their capability to provide a higher initial discharge capacity than the theoretical capacity. In this string, a new brannerite type copper vanadate conversion anode makes its impression in the lithium battery world. A poor capacity retention and voltage hysteresis exhibited by the typical conversion anode is the main obstruction to commercialize it for lithium batteries. But in the present work, a brannerite type copper vanadium oxide prepared by hydrothermal method has been used as a conversion anode for lithium batteries with approximately 100 % columbic efficiency and 70 % capacity retention. The low voltage hysteresis, better capacity retention, excellent columbic efficiency and better cyclability will make this material as a better choice to replace the conventional anode for lithium batteries in future.

Keywords

Vanadium Oxide Vanadium Pentoxide Brannerite Columbic Efficiency Voltage Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors M. Sivakumar, Fu-Ming Wang gratefully acknowledge the Department of Science and Technology and National Science Committee under Indo-Taiwan collaborative research project for providing the financial support to do this work.

References

  1. 1.
    M.S. Park, S.B. Ma, D.J. Lee, D. Im, S.-G. Doo, O. Yamamoto, Sci. Rep. 4, 3815 (2014)Google Scholar
  2. 2.
    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 7, 513 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nat. Commun. 6, 6362 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Roy, S.K. Srivastava, J. Mater. Chem. A 3, 2454 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Shi, J.-Z. Wang, S.-L. Chou, D. Wexler, H.-J. Li, K. Ozawa, H.-K. Liu, Y.-P. Wu, Nano Lett. 13, 4715 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Ni, J. Ma, J. Zhang, X. Yang, L. Zhang, J. Power Sources 282, 65 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Simões, Y. Surace, S. Yoon, C. Battaglia, S. Pokrant, A. Weidenkaff, J. Power Sources 291, 66 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Deng, S. Zhang, Z. Dong, Y. Shang, Nano Energy 4, 49 (2014)CrossRefGoogle Scholar
  9. 9.
    Q. Van Overmeere, S. Ramanathan, Electrochim. Acta 150, 83 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Fei, Z. Li, W. Feng, X. Liu, Dalton Trans. 44, 146 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Inagaki, Solid State Ionics 156, 275 (2003)CrossRefGoogle Scholar
  12. 12.
    C. Calvo, D. Manolescu, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 29, 1743 (1973)CrossRefGoogle Scholar
  13. 13.
    R. Kozłowski, J. Ziółkowski, K. Mocała, J. Haber, J. Solid State Chem. 35, 1 (1980)CrossRefGoogle Scholar
  14. 14.
    E. Andrukaitis, J.P. Cooper, J.H. Smit, J. Power Sources 54, 465 (1995)CrossRefGoogle Scholar
  15. 15.
    F.L. Hess, R.C. Wells, J. Frankl. Inst. 189, 225 (1920)CrossRefGoogle Scholar
  16. 16.
    R. Ruh, A.D. Wadsley, Acta Crystallogr. A 21, 974 (1966)CrossRefGoogle Scholar
  17. 17.
    B. Napruszewska, P. Olszewski, J. Ziółkowski, J. Solid State Chem. 133, 545 (1997)CrossRefGoogle Scholar
  18. 18.
    Y. Wei, C.W. Ryu, G. Chen, K.B. Kim, Electrochem. Solid-State Lett. 9, A487 (2006)CrossRefGoogle Scholar
  19. 19.
    R. Gilligan, A.N. Nikoloski, Miner. Eng. 71, 34 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Thomas, Nat. Mater. 2, 705 (2003)CrossRefGoogle Scholar
  21. 21.
    H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, J. Am. Chem. Soc. 130, 5361 (2008)CrossRefGoogle Scholar
  22. 22.
    J.-M. Tarascon, P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, Nature 407, 496 (2000)CrossRefGoogle Scholar
  23. 23.
    F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, V. Volkov, D. Su, B. Key, M.S. Whittingham, C.P. Grey, G.G. Amatucci, Y. Zhu, J. Graetz, J. Am. Chem. Soc. 133, 18828 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, Journal of Power Sources 257, 421 (2014)Google Scholar
  25. 25.
    Y. Abu-Lebdeh, I. Davidson (eds.), Nanotechnology for Lithium-Ion Batteries (Springer, Boston, MA, 2013)Google Scholar
  26. 26.
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Ni, J. Ma, J. Zhang, X. Yang, L. Zhang, Electrochemical Performance of Cobalt Vanadium Oxide/Natural Graphite as Anode for Lithium Ion Batteries (Elsevier, Amsterdam, 2015)Google Scholar
  28. 28.
    F. Cheng, J. Chen, J. Mater. Chem. 21, 9841 (2011)CrossRefGoogle Scholar
  29. 29.
    G. Yang, H. Cui, G. Yang, C. Wang, ACS Nano 8, 4474 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Adv. Mater. 22, E170 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Zhang, S. Peng, R. Hu, S. Ramakrishna, RSC Adv. 5, 20692 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. Prahasini
    • 1
  • R. Subadevi
    • 1
  • Fu-Ming Wang
    • 2
  • Wei-Ren Liu
    • 3
  • M. Sivakumar
    • 1
    Email author
  • I. V. B. Maggay
    • 3
  1. 1.School of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Graduate Institute of Advanced Science and TechnologyNational Taiwan University of Science and TechnologyTaipeiTaiwan, ROC
  3. 3.Department of Chemical EngineeringChung Yuan Christian UniversityChung LiTaiwan, ROC

Personalised recommendations