Retrieval of optical constants of undoped amorphous selenium films from an analysis of their normal-incidence transmittance spectra using numeric PUMA method

  • Mousa M. Abdul-Gader JafarEmail author
  • Mahmoud H. Saleh
  • Mais Jamil A. Ahmad
  • Basim N. Bulos
  • Tariq M. Al-Daraghmeh


The as-measured room-temperature normal-incidence transmittance–wavelength (T exp(λ) − λ) spectra of undoped amorphous selenium (a-Se) films, which were thermally deposited onto glass slides, exhibit well-resolved interference-fringe maxima and minima λ > λ c (≈630 nm), below which they fall rather sharply to zero transmittance. In the transparency and weak absorption region, the maxima transmittance is close to the substrate transmission, implying good uniformity of the a-Se films. The geometric thicknesses of the films and the spectral dependency of their optical constants n(λ) and κ(λ) were retrieved by analyzing the T exp(λ) − λ spectra by the PUMA method, based on the full T(λ)-formula for air-supported {uniform thin film/thick transparent substrate}-stacks, without the need for dispersion relations in prior and regardless of the number of interference fringes. The n(λ) − λ data of the transparency and weak absorption regions were found to fit the Wemple–DiDomenico and modified Sellmeier dispersion relations. The ω-dependency of the absorption coefficient α(ω) in the absorption-edge region has been analyzed in view of various interband transition models and was found to be nearly described by the linear power-law relation \(\alpha \hbar \omega \propto \hbar \omega - E_{\text{g}}\), with E g ≈ 2.2 eV over a broad spectral range.


Optical Constant Interband Transition Geometric Thickness Dispersion Formula Spectral Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors appreciate the permission to use PUMA program (free online at


  1. 1.
    S.O. Kasap, J.A. Rowlands, J. Mater. Sci. Mater. Electron. 11, 179 (2000)CrossRefGoogle Scholar
  2. 2.
    S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Wang, F. Chen, K.-W. Shin, N. Allec, K.S. Karim, Proc. SPIE 7622, 762217 (2010)CrossRefGoogle Scholar
  4. 4.
    J.C. Bernede, S. Touihri, G. Safoula, Solid State Electron. 42, 1775 (1998)CrossRefGoogle Scholar
  5. 5.
    S.E. Iyayi, A.A. Oberafo, J. Appl. Sci. Environ. Manag. 9, 143 (2005)Google Scholar
  6. 6.
    S.M. Yoon, N.Y. Lee, S.O. Ryu, K.J. Choi, Y.S. Park, S.Y. Lee, B.G. Yu, M.-J. Kang, S.-Y. Choi, M. Wuttig, IEEE Electron Dev. Lett. 27, 444 (2006)Google Scholar
  7. 7.
    M.M. Hafiz, O. El-Shazly, N. Kinawy, Appl. Surf. Sci. 171, 231 (2001)CrossRefGoogle Scholar
  8. 8.
    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  9. 9.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 2002)Google Scholar
  10. 10.
    M.M. Abdul-Gader Jafar, Eur. Int. J. Sci. Technol. 2, 274 (2013)Google Scholar
  11. 11.
    I. Chambouleyron, J.M. Martínez, Optical properties of dielectric and semiconductor thin films, in Handbook of Thin Films Materials, vol. 3, ed. by H.S. Nalwa (Academic Press, New York, 2001)Google Scholar
  12. 12.
    S. Kasap, C. Koughia, J. Singh, H. Ruda, S. O’Leary, in Springer Handbook of Electronic and Photonic Materials, Chapter 3, ed. by S. Kasap, P. Capper (Springer, Berlin, 2006)Google Scholar
  13. 13.
    O.S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991)Google Scholar
  14. 14.
    L. Ward, The Optical Constants of Bulk Materials and Films, 2nd edn. (Institute of Physics Publishing, Bristol, 1994)Google Scholar
  15. 15.
    D. Dragoman, M. Dragoman, Optical Characterization of Solids (Springer, Berlin, 2002)CrossRefGoogle Scholar
  16. 16.
    E.G. Birgin, I. Chambouleyron, J.M. Martinez, J. Comp. Phys. 151, 862 (1999)CrossRefGoogle Scholar
  17. 17.
    M. Mulato, I. Chambouleyron, E.G. Birgin, J.M. Martínez, Appl. Phys. Lett. 77, 2133 (2000)CrossRefGoogle Scholar
  18. 18.
    S.D. Ventura, E.G. Birgin, J.M. Martinez, I. Chambouleyron, J. Appl. Phys. 97, 043512 (2005)CrossRefGoogle Scholar
  19. 19.
    N. Erarslan, T. Gungor, J. Grad. Sch. Nat. Appl. Sci. Mehmet Akif Ersoy Univ. 1, 181 (2010)Google Scholar
  20. 20.
    D. Poelman, P.F. Smet, J. Phys. D Appl. Phys. 36, 1850 (2003)CrossRefGoogle Scholar
  21. 21.
    M. Kukinyi, N. Benkö, A. Grofcsik, W.J. Jones, Thin Solid Films 286, 164 (1996)CrossRefGoogle Scholar
  22. 22.
    W. Theiss, Hard- and Software (Manual), (
  23. 23.
    J.A. Dobrowolski, F.C. Ho, A. Waldorf, Appl. Opt. 22, 3191 (1983)CrossRefGoogle Scholar
  24. 24.
    W.E. Case, Appl. Opt. 22, 1832 (1983)CrossRefGoogle Scholar
  25. 25.
    C.H. Peng, S.B. Desu, J. Am. Ceram. Soc. 77, 929 (1994)CrossRefGoogle Scholar
  26. 26.
    T. Innami, S. Adachi, Phys. Rev. B 60, 8284 (1999)CrossRefGoogle Scholar
  27. 27.
    W.C. Tan, G. Belev, K. Koughia, R. Johanson, S.K. O’Leary, S. Kasap, J. Mater. Sci. Mater. Electron. 18, S429 (2007)CrossRefGoogle Scholar
  28. 28.
    W.C. Tan, Optical Properties of Amorphous Selenium Films. M.Sc. Thesis, (University of Saskatchewan, Saskatoon, Canada, 2006)Google Scholar
  29. 29.
    W.C. Tan, K. Koughia, J. Singh, S.O. Kasap, in Optical Properties of Condensed Matter and Applications, Chapter 1, ed. by J. Singh (Wiley, London, 2006)Google Scholar
  30. 30.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)Google Scholar
  31. 31.
    A. Solieman, A.A. Abu-Sehly, Phys. B 405, 1101 (2010)CrossRefGoogle Scholar
  32. 32.
    G. Navarrete, H. Marquez, L. Cota, J. Siqueiros, R. Machorro, Appl. Opt. 29, 2850 (1990)CrossRefGoogle Scholar
  33. 33.
    M.H. Saleh, M.M. Abdul-Gader Jafar, B.N. Bulos, T.M.F. Al-Daraghmeh, Appl. Phys. Res. 6, 10 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Nagels, E. Sleeckx, R. Callaerts, L. Tichy, Solid State Commun. 94, 49 (1995)CrossRefGoogle Scholar
  35. 35.
    P. Nagels, E. Sleeckx, R. Callaerts, E. Marquez, J.M. Gonzalez, A.M. Bernal-Oliva, Solid State Commun. 102, 539 (1997)CrossRefGoogle Scholar
  36. 36.
    L. Tichy, H. Ticha, P. Nagels, E. Sleeckx, R. Callaerts, Mater. Lett. 26, 279 (1996)CrossRefGoogle Scholar
  37. 37.
    H. Adachi, K.C. Kao, J. Appl. Phys. 51, 6326 (1980)CrossRefGoogle Scholar
  38. 38.
    T. Innami, T. Miyazaki, S. Adachi, J. Appl. Phys. 86, 1382 (1999)CrossRefGoogle Scholar
  39. 39.
    M.F. Kotkata, F.A. Abdel-Wahab, J. Mater. Sci. 25, 2379 (1990)CrossRefGoogle Scholar
  40. 40.
    M.F. Kotkata, F.A. Abdel-Wahab, M.S. Al-Kotb, Appl. Surf. Sci. 255, 9071 (2009)CrossRefGoogle Scholar
  41. 41.
    K. Shimakawa, J. Singh, S.K. O’Leary, in Optical Properties of Condensed Matter and Applications, Chapter 3, ed. by J. Singh (Wiley, London, 2006)Google Scholar
  42. 42.
    A.A. Mulama, J.M. Mwabora, A.O. Oduor, C.C. Muiva, Afr. Rev. Phys. 9, 33 (2014)Google Scholar
  43. 43.
    A.A. Mulama, J.M. Mwabora, A.O. Oduor, C.C. Muiva, B. Muthoka, B.N. Amukayia, D.A. Mbete, New J. Glass Ceram. 5, 16 (2015)CrossRefGoogle Scholar
  44. 44.
    K. Bindu, M. Lakshmi, S. Bini, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Semicond. Sci. Technol. 17, 270 (2002)CrossRefGoogle Scholar
  45. 45.
    R. Bettsteller, H. Witte, W. Herms, H. Frreistedt, Solid State Commun. 87, 763 (1993)CrossRefGoogle Scholar
  46. 46.
    J.P. Larmagnac, J. Grenet, P. Michon, J. Non-Crystal. Solids 45, 157 (1981)CrossRefGoogle Scholar
  47. 47.
    S.O. Kasap, V. Aiyah, S. Yannacopoulos, J. Phys. D Appl. Phys. 23, 553 (1990)CrossRefGoogle Scholar
  48. 48.
    D. Tonchev, S.O. Kasap, Mater. Sci. Eng. A 328, 62 (2002)CrossRefGoogle Scholar
  49. 49.
    R. Swanepoel, J. Phys. E: Sci. Instrum. 17, 896 (1984)CrossRefGoogle Scholar
  50. 50.
    B.S. Richards, Optical Characterization of Sputtered Silicon Thin Films for Photovoltaic Application. M.Sc. Thesis, (University of New South Wales, Australia 1998)Google Scholar
  51. 51.
    E. Márquez, J.B. Ramirez-Malo, P. Villares, R. Jiménez-Garay, R. Swanepoel, Thin Solid Films 254, 83 (1995)CrossRefGoogle Scholar
  52. 52.
    E. Márquez, P. Nagels, J.M. Gonzalez-Leal, A.M. Bernal-Oliva, E. Sleeckx, R. Callaerts, Vacuum 52, 55 (1999)CrossRefGoogle Scholar
  53. 53.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)CrossRefGoogle Scholar
  54. 54.
    S.K. O’Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82, 3334 (1997)CrossRefGoogle Scholar
  55. 55.
    G.F. Bassani, G.P. Parravicini, Electronic States and Optical Transitions in Solids (Science of Solid State Monographs), Chapter 5, (Pergamon Press, 1975)Google Scholar
  56. 56.
    G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mousa M. Abdul-Gader Jafar
    • 1
    Email author
  • Mahmoud H. Saleh
    • 2
  • Mais Jamil A. Ahmad
    • 1
  • Basim N. Bulos
    • 1
  • Tariq M. Al-Daraghmeh
    • 1
  1. 1.Department of Physics, Faculty of ScienceThe University of JordanAmmanJordan
  2. 2.Department of Physics, Faculty of Engineering TechnologyAl-Balqa′ Applied UniversityAmmanJordan

Personalised recommendations