Skip to main content
Log in

Synthesis of Co2P/Co nanocomposites using single source precursor by thermal decomposition method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, the synthesis and characterization of Co2P/Co nanocomposites are reported. Three kinds of precursors are studied: bis(salicylidene)cobalt(II) [Co(sal)2], bis(salicylate)cobalt(II) [Co(Hsal)2] and cobalt oxalate [Co(O4C2)·4H2O]. The cobalt(II) acetate tetrahydrate Co(CH3COO)2·4H2O is used as reference. The nanocomposites are prepared by thermal decomposition method using triphenylphosphine as a surfactant solvent and phosphorus precursor. A possible mechanism of the formation of the nanocomposites is put forward to explain the experimental observations. This is the first time that Co2P/Co nanocomposites are synthesized. To study the crystalline structure, composition, size, morphology and magnetic property of the products, characterization techniques including XRD, SEM, TEM, FT-IR and VSM are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.L. Brock, S.C. Perera, K.L. Stamm, Chem. Eur. J. 10, 3364 (2004)

    Article  Google Scholar 

  2. Y. Li, M.A. Malik, P. O’Brien, J. Am. Chem. Soc. 127, 16020 (2005)

    Article  Google Scholar 

  3. C.A. McAuliffe, W. Levason (eds.), Phosphine, Arsine and Stibine Complexes of the Transition Elements (Elsevier, Amsterdam, 1979)

    Google Scholar 

  4. B. Aronsson, T. Lundstrom, S. Rundqvist (eds.), Borides, Silicides and Phosphides (Wiley, New York, 1965)

    Google Scholar 

  5. L. Sun, Y. Hao, C.-L. Chien, P.C. Searson, IBM J. Res. Dev. 49, 79 (2005)

    Article  Google Scholar 

  6. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  Google Scholar 

  7. T. Hyeon, Chem. Commun. 927 (2003)

  8. T. Kawai, K.K. Bando, Y.-K. Lee, S.T. Oyama, W.-J. Chun, K. Asakura, J. Catal. 241, 20 (2006)

    Article  Google Scholar 

  9. Z.L. Wu, F.X. Sun, W.C. Wu, Z.C. Feng, C.H. Liang, Z.B. Wei, C. Li, J. Catal. 222, 41 (2004)

    Article  Google Scholar 

  10. H.G. Von Schnering, W. Honle, Encyclopedia of Inorganic Chemistry, vol. 6 (Chichester, Wiley, 1994), p. 3106

  11. C. Stinner, R. Prins, Th Weber, J. Catal. 202, 187 (2001)

    Article  Google Scholar 

  12. T. Hōkabe, J. Sci. Hiroshima Univ. Ser. A 42, 1 (1978)

    Google Scholar 

  13. S. Fujii, S. Ishida, S. Asano, J. Phys. F Metal Phys. 18, 971 (1988)

    Article  Google Scholar 

  14. Y. Qiang, R.F. Sabiryanov, S.S. Jaswal, Y. Liu, H. Haberland, D.J. Sellmyer, Phys. Rev. B 66, 644041 (2002)

    Article  Google Scholar 

  15. C. Petit, V. Russier, M.P. Pileni, J. Phys. Chem. B 107, 10333 (2003)

    Article  Google Scholar 

  16. L.E. Klebanoff, D.G. Van Campen, R.J. Pouliot, Phys. Rev. B 49, 2047 (1994)

    Article  Google Scholar 

  17. W.D. Zhang, J.T.L. Thong, W.C. Tjiu, L.M. Gan, Diamond Relat. Mater. 11, 1638 (2002)

    Article  Google Scholar 

  18. C.J. Lee, J. Park, Carbon 39, 1891 (2001)

    Article  Google Scholar 

  19. E. Terrado, M. Redrado, E. Muñoz, W.K. Maser, A.M. Benito, M.T. Martínez, Mater. Sci. Eng. C 26, 1185 (2006)

    Article  Google Scholar 

  20. R. Fruchart, A. Roger, J.P. Senateur, J. Appl. Phys. 40, 1250 (1969)

    Article  Google Scholar 

  21. J.R. Van Wazer, Phosphorus and its Compounds, vol. 1 (Interscience, New York, 1958)

    Google Scholar 

  22. Y. Xie, H.L. Su, X.F. Qian, X.M. Liu, Y.T. Qian, J. Solid State Chem. 149, 88 (2000)

    Article  Google Scholar 

  23. M. Salavati-Niasari, M. Shaterian, M.R. Ganjali, P. Norouzi, J. Mol. Catal. A 261, 147 (2007)

    Article  Google Scholar 

  24. G.D. Bajju, S. Shradha, Kaur. J. Indian Chem. Soc. 82, 589 (2005)

    Google Scholar 

  25. M. Salavati-Niasari, N. Mir, F. Davar, J. Phys. Chem. Solids 70, 847 (2009)

    Article  Google Scholar 

  26. J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.J. Noh, J.H. Park, C.J. Bae, J.G. Park, T. Hyeon, Adv. Mater. 17, 429 (2005)

    Article  Google Scholar 

  27. H.T. Yang, Y.K. Su, C.M. Shen, T.Z. Yang, H.J. Gao, Surf. Interface Anal. 36, 155 (2004)

    Article  Google Scholar 

  28. I. Zafiropoulou, K. Papagelis, N. Boukos, A. Siokou, D. Niarchos, V. Tzitzios, J. Phys. Chem. C 114, 7582 (2010)

    Article  Google Scholar 

  29. X. Zheng, S. Yuan, Z. Tian, S. Yin, J. He, K. Liu, L. Liu, Chem. Mater. 21, 4839 (2009)

    Article  Google Scholar 

  30. J. Yang, J.H. Zeng, S.H. Yu, L. Yang, G.E. Zhou, Y.T. Qian, Chem. Mater. 12, 3259 (2000)

    Article  Google Scholar 

  31. M. Salavati-Niasari, A. Sobhani, S. Khoshrooz, N. Mirzanasiri, J. Cluster Sci. 25, 937 (2014)

    Article  Google Scholar 

  32. A. Sobhani, M. Salavati-Niasari, Mater. Res. Bull. 48, 3204 (2013)

    Article  Google Scholar 

  33. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 617, 93 (2014)

    Article  Google Scholar 

  34. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 625, 26 (2015)

    Article  Google Scholar 

  35. F. Ansari, A. Sobhani, M. Salavati-Niasari, RSC Adv. 4, 63946 (2014)

    Article  Google Scholar 

  36. D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, S. Gholamrezaei, J. Nanostructures 4, 227 (2014)

    Google Scholar 

  37. G. Nabiyouni, S. Sharifi, D. Ghanbari, M. Salavati-Niasari, J. Nanostructures 4, 317 (2014)

    Google Scholar 

  38. M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, J. Nanostructures 4, 459 (2014)

    Google Scholar 

  39. F. Beshkar, M. Salavati-Niasari, J. NANOSTRUCTURES 5, 17 (2015)

    Article  Google Scholar 

  40. L. Nejati-Moghadam, A.E. Bafghi-Karimabad, M. Salavati-Niasari, H. Safardoust, J. Nanostructures 5, 47 (2015)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to the council of University of Bojnord and University of Kashan for providing financial support to undertake this work by Grant No. (159271/588).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azam Sobhani or Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, A., Salavati-Niasari, M. Synthesis of Co2P/Co nanocomposites using single source precursor by thermal decomposition method. J Mater Sci: Mater Electron 27, 3271–3280 (2016). https://doi.org/10.1007/s10854-015-4155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4155-0

Keywords

Navigation