Skip to main content
Log in

New microwave dielectric system of Li4x Mg3(1−x)Al6(1−x)Ti5x O12 with adjustable thermal stability and high quality factor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li4x Mg3(1−x)Al6(1−x)Ti5x O12 (x = 0.2, 0.4, 0.6, 0.8) ceramics were prepared by a solid state reaction method. The phase evolution, microstructure and composition of ceramics were investigated using X-ray powder diffractometer, scanning electron microscope, energy dispersive spectrometer. The microwave dielectric properties of ceramics were studied by a network analyzer. Both MgAl2O4 and Li4Ti5O12 have a cubic spinel structure, whereas no uniform solid solution was formed in Li4x Mg3(1−x)Al6(1−x)Ti5x O12 ceramics. There were Al-rich compounds and Ti-rich compounds in the mixed phases. With increasing x form 0.2 to 0.8, Al-rich compounds decreased and Ti-rich compounds increased. A complex phase evolution was appeared in the process, such as Mg2TiO4, Li2MgTi3O8 and Li4Ti5O12 compounds. With increasing x values, the sintering temperature was reduced from 1280 to 925 °C. Li4x Mg3(1−x)Al6(1−x)Ti5x O12 ceramics presented an excellent comprehensive performance with ε r of 11.5–26.5, Q × f values of 7102–30,191 GHz and τ f values of −55.4 ~ +5.7 ppm/ °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Wakino, High frequency dielectrics and their applications, in Proceedings of the 6th IEEE International Symposium on Application of Ferroelectrics, Institute of Electrical and Electronic Engineers (New York, 1986), pp. 97–106

  2. S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, K. Wakino, Dielectric materials, devises, and circuits. IEEE Trans. Microw. Theory Technol. 50, 706–720 (2002)

    Article  Google Scholar 

  3. A.G. Belous, Physicochemical aspects of the development of MW dielectrics, and their use. J. Eur. Ceram. Soc. 21, 2717–2722 (2001)

    Article  Google Scholar 

  4. S.B. Narang, S. Bahel, Low loss dielectric ceramics for microwave applications: a review. J. Ceram. Process. Res. 11(3), 316–321 (2010)

    Google Scholar 

  5. B. Tang, H. Li, P. Fan, S.Q. Yu, S.R. Zhang, The effect of Mg: Ti ratio on the phase composition and microwave dielectric properties of MgTiO3 ceramics prepared by one synthetic process. J. Mater. Sci. Mater. Electron. 25, 2482–2486 (2014)

    Article  Google Scholar 

  6. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Oxford, 2008)

    Google Scholar 

  7. Y. Wu, D. Zhou, J. Guo, L.X. Pang, H. Wang, X. Yao, Temperature stable microwave dielectric ceramic 0.3Li2TiO3–0.7Li(Zn0.5Ti1.5)O4 with ultra-low dielectric loss. Mater. Lett. 65, 2680–2682 (2011)

    Article  Google Scholar 

  8. A. Chaouchi, S. d’Astorg, S. Marinel, Low sintering temperature of (Zn0.65Mg0.35)TiO3xCaTiO3 based dielectric with controlled temperature coefficient. Ceram. Int. 35(5), 1985–1989 (2009)

    Article  Google Scholar 

  9. K. Tang, Q. Wu, X.Y. Xiang, Low temperature sintering and microwave dielectric properties of zinc silicate ceramics. J. Mater. Sci. Mater. Electron. 23, 1099–1102 (2012)

    Article  Google Scholar 

  10. M. Guo, G. Dou, Y.X. Li, S.P. Gong, The improvement research on microwave dielectric properties of magnesium tungstate for LTCC. J. Mater. Sci. Mater. Electron. 26, 608–612 (2015)

    Article  Google Scholar 

  11. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, (1−x) MgAl2O4xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A Mater. 81, 823–826 (2005)

    Article  Google Scholar 

  12. A. Erdas, S. Ozcan, D. Nalci, M.O. Guler, H. Akbulut, Novel Ag/Li4Ti5O12 binary composite anode electrodes for high capacity Li-ion batteries. Surf. Coat. Technol. 271, 136–140 (2015)

    Article  Google Scholar 

  13. Q. Zeng, W. Li, J. Shi, J. Guo, M. Zuo, W. Wu, A new microwave dielectric ceramic for LTCC applications. J. Am. Ceram. Soc. 89(5), 1733–1735 (2006)

    Article  Google Scholar 

  14. D. Zhou, H. Wang, L.X. Pang, X. Yao, X.G. Wu, Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver. J. Am. Ceram. Soc. 91(12), 4115–4117 (2008)

    Article  Google Scholar 

  15. L.X. Pang, D. Zhou, A low-firing microwave dielectric material in Li2O–ZnO–Nb2O5 system. Mater. Lett. 64, 2413–2415 (2010)

    Article  Google Scholar 

  16. G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int. J. Appl. Ceram. Technol. 10(3), 492–501 (2013)

    Article  Google Scholar 

  17. J. Krupka, Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys. 79, 195–198 (2003)

    Article  Google Scholar 

  18. J.J. Bian, Y.F. Dong, Sintering behavior, microstructure and microwave dielectric properties of Li2+x TiO3 (0 ≤ x ≤ 0.2). Mater. Sci. Eng. B 176, 147–151 (2011)

    Article  Google Scholar 

  19. S.S.A. Jaroudi, A.U. Hamid, A.R.I. Mohammed, S. Saner, Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technol. 175, 115–121 (2007)

    Article  Google Scholar 

  20. M.H. Kim, S. Nahm, W.S. Lee, M.J. Yoo, J.C. Park, H.J. Lee, Effect of microstructure on microwave dielectric properties of Al2O3-added Ba(Zn1/3Ta2/3)O3 ceramics. Jpn. J. Appl. Phys. 43(4A), 1438–1441 (2004)

    Article  Google Scholar 

  21. G.A. Ravi, F. Azough, R. Freer, Effect of Al2O3 on the structure and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3. J. Eur. Ceram. Soc. 27, 2855–2859 (2007)

    Article  Google Scholar 

  22. P.J. Liao, T. Qiu, J. Yang, X.Y. Lu, Effect of Al2O3 addition on microwave dielectric properties of BaCo0.194Zn0.116Nb0.69O3 ceramics. Electron. Mater. Lett. 10(1), 121–125 (2014)

    Article  Google Scholar 

  23. X.L. Chen, H.F. Zhou, L. Fang, X.B. Liu, Y.L. Wang, Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. J. Alloys Compd. 509, 5829–5832 (2011)

    Article  Google Scholar 

  24. A. Belous, O. Ovchar, D. Durilin, High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89(11), 3441–3445 (2006)

    Article  Google Scholar 

  25. I.N. Jawahar, P. Mohanan, M.T. Sebastian, A5B4O15 (A = Ba, Sr, Mg, Ca, Zn; B = Nb, Ta) microwave dielectric ceramics. Mater. Lett. 57, 4043–4048 (2003)

    Article  Google Scholar 

  26. A. Kan, H. Ogawa, H. Ohsato, Microwave dielectric properties of Y2BaCuO5 compound substituted Ni for Cu. Mater. Sci. Eng. B 79, 180–182 (2001)

    Article  Google Scholar 

  27. H. Kagata, R. Saito, H. Katsumura, Al2O3–MgO–ReO x (Re = rare earth) based LTCC and its applications to multilayer non-shrinkage substrate for microwave devices. J. Electro-ceram. 13, 277–280 (2004)

    Article  Google Scholar 

  28. P.V. Bijumon, M.T. Sebastian, P. Mohanan, Experimental investigations and three dimensional transmission line matrix simulation of Ca5−x A x B2TiO12 (A = Mg, Zn, Ni and Co: B = Nb and Ta) ceramic resonators. J. Appl. Phys. 98, 124105–124115 (2005)

    Article  Google Scholar 

  29. M.T. Sebastian, S. Solomon, R. Ratheesh, J. George, P. Mohanan, Preparation, characterization and microwave properties of RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) dielectric ceramics. J. Am. Ceram. Soc. 84, 1487–1489 (2001)

    Article  Google Scholar 

  30. I. Levin, T.A. Vanderah, R. Coutts, Phase equilibria and dielectric properties in perovskite-like (1−x)LaCa0.5Zr0.5O3xATiO3 (A = Ca, Sr) ceramics. J. Mater. Res. 17, 1729–1734 (2002)

    Article  Google Scholar 

  31. S.Y. Cho, C.H. Kim, D.W. Kim, K.S. Hong, Dielectric properties of Ln(Mg1/2Ti1/2)O3 as substrates for high-Tc superconductor thin films. J. Mater. Res. 14, 2484–2487 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 11464009 and 11364012), Natural Science Foundation of Guangxi (Nos. 2015GXNSFDA139033, 2014GXNSFAA118312, 2014GXNSFAA118326 and 2013GXNSFAA019291), Research Start-up Funds Doctor of Guilin University of Technology (Nos. 002401003281 and 002401003282) and Project of Outstanding Young Teachers’ Training in Higher Education Institutions of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Gong, J., Wang, N. et al. New microwave dielectric system of Li4x Mg3(1−x)Al6(1−x)Ti5x O12 with adjustable thermal stability and high quality factor. J Mater Sci: Mater Electron 27, 2557–2563 (2016). https://doi.org/10.1007/s10854-015-4058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4058-0

Keywords

Navigation