Skip to main content
Log in

Synthesis and characterization of flower-like ZnO structures and their applications in photocatalytic degradation of Rhodamine B dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have synthesized ZnO nanoflakes (ZnO-NFs) assembled flower-like structures through simple wet chemical route without using any growth directing agent. The ZnO NFs have been characterized in terms of morphological, structural, and optical properties by field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FTIR) and ultraviolet–visible (UV–Vis) spectroscopy. FE-SEM images show the nanoflakes assembled flower-like morphology of the as-prepared sample. XRD and Raman studies confirm that it has stable wurtzite structure. The formation of ZnO-NFs is also confirmed by the bond corresponding to metal-oxygen vibration in the FTIR spectrum at ~460 cm−1. The UV–Vis absorption spectrum of synthesized sample gives the optical band gap value of 3.2 eV. The photocatalytic activity of the ZnO-NFs is evaluated by observing their role in the photocatalytic degradation of Rhodamine B (RhB) dye. Results show that ZnO-NFs are capable of working efficiently for the degradation of RhB dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005)

    Article  Google Scholar 

  2. N. Rana, S. Chand, A.K. Gathania, Band gap engineering of ZnO by doping with Mg. Phys. Scr. 90, 085502 (1–6) (2015)

  3. J. Xie, H. Wang, M. Duan, L. Zhang, Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method. Appl. Surf. Sci. 257, 6358–6363 (2011)

    Article  Google Scholar 

  4. J.A. Anta, E. Guillén, R. Tena-Zaera, ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 116, 11413–11425 (2012)

    Article  Google Scholar 

  5. F. Lu, W. Cai, Y. Zhang, ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Funct. Mater. 18, 1047–1056 (2008)

    Article  Google Scholar 

  6. P. Struk, T. Pustelny, K. Gołaszewska, M.A. Borysiewicz, E. Kamińska, T. Wojciechowski et al., ZnO-wide bandgap semiconductor and possibilities of its application in optical waveguide structures. Metrol. Meas. Syst. 21, 401–412 (2014)

    Article  Google Scholar 

  7. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  8. Y. Zeng, T. Zhang, L. Wang, R. Wang, W. Fu, H. Yang, Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod bundles by poly(ethylene glycol)-assisted hydrothermal process. J. Phys. Chem. C 113, 3442–3448 (2009)

    Article  Google Scholar 

  9. H. Sun, Y. Yu, J. Luo, M. Ahmad, J. Zhu, Morphology-controlled synthesis of ZnO 3D hierarchical structures and their photocatalytic performance. CrystEngComm 14, 8626–8632 (2012)

    Article  Google Scholar 

  10. Y. Wang, X. Li, N. Wang, X. Quan, Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep. Purif. Technol. 62, 727–732 (2008)

    Article  Google Scholar 

  11. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, N.L. Gavade, P.R. Waghmare, K.M. Garadkar, Template free large scale synthesis of multi-shaped ZnO nanostructures for optical, photocatalytical and antibacterial properties. J. Mater. Sci. Mater. Electron. 26, 8367–8379 (2015)

    Article  Google Scholar 

  12. P. Thangaraj, M.R. Viswanathan, K. Balasubramanian, S. Panneerselvam, H.D. Mansilla, M.A. Gracia-Pinilla et al., Morphology controlled synthesis of Sm doped ZnO nanostructures for photodegradation studies of Acid Blue 113 under UV-A light. J. Mater. Sci. Mater. Electron. 26, 8784–8792 (2015)

    Article  Google Scholar 

  13. X. Zhang, J. Pan, C. Zhu, Y. Sheng, Z. Yan, Y. Wang et al., The visible light catalytic properties of carbon quantum dots/ZnO nanoflowers composites. J. Mater. Sci. Mater. Electron. 26, 2861–2866 (2015)

    Article  Google Scholar 

  14. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, J. Wudtipan, K. Srijan et al., Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer. Powder Technol. 212, 432–438 (2011)

    Article  Google Scholar 

  15. A.A. Khodja, T. Sehili, J.-F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A Chem. 141, 231–239 (2001)

    Article  Google Scholar 

  16. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, First-principles study of native point defects in ZnO. Phys. Rev. B 61, 15019–15027 (2000)

    Article  Google Scholar 

  17. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 22, 798–806 (1988)

    Article  Google Scholar 

  18. O.J. Perales-Perez, M.S. Tomar, S.P. Singh, A. Watanabe, T. Arai, A. Kasuya et al., Ambient-temperature synthesis of nanocrystalline ZnO and its application in the generation of hydrogen. Phys. Status Solidi 1, 803–806 (2004)

    Article  Google Scholar 

  19. I. Poulios, I. Tsachpinis, Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. J. Chem. Technol. Biotechnol. 74, 349–357 (1999)

    Article  Google Scholar 

  20. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 77, 65–82 (2003)

    Article  Google Scholar 

  21. S. Gao, S. Jiao, B. Lei, H. Li, J. Wang, Q. Yu et al., Efficient photocatalyst based on ZnO nanorod arrays/p-type boron-doped-diamond heterojunction. J. Mater. Sci. Mater. Electron. 26, 1018–1022 (2014)

    Article  Google Scholar 

  22. J. Li, J. Cao, X. Zhang, S. Wang, Y. Zheng, J. Pan et al., Preparation of cotton cellulose nanofibers/ZnO/CdS nanocomposites and its photocatalytic activity. J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-3914-2

    Google Scholar 

  23. B.M. Rajbongshi, A. Ramchiary, B.M. Jha, S.K. Samdarshi, Synthesis and characterization of plasmonic visible active Ag/ZnO photocatalyst. J. Mater. Sci. Mater. Electron. 25, 2969–2973 (2014)

    Article  Google Scholar 

  24. N. Dhiman, B.P. Singh, A.K. Gathania, Synthesis and characterization of dye-doped TiO2–SiO2 core-shell composite microspheres. J. Nanophoton. 6, 063511 (1–10) (2012)

  25. J.-M. Herrmann, C. Guillard, P. Pichat, Heterogeneous photocatalysis: an emerging technology for water treatment. Catal. Today 17, 7–20 (1993)

    Article  Google Scholar 

  26. E. Brillas, E. Mur, R. Sauleda, L. Sànchez, J. Peral, X. Domènech et al., Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B Environ. 16, 31–42 (1998)

    Article  Google Scholar 

  27. R.K. Dutta, B.P. Nenavathu, S. Talukdar, Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles. Colloids Surf. B Biointerfaces. 114, 218–224 (2014)

    Article  Google Scholar 

  28. E.K. Goharshadi, Y. Ding, M.N. Jorabchi, P. Nancarrow, Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason. Sonochem. 16, 120–123 (2009)

    Article  Google Scholar 

  29. H. Lu, M. Zhang, M. Guo, Controllable electrodeposition of ZnO nanorod arrays on flexible stainless steel mesh substrate for photocatalytic degradation of Rhodamine B. Appl. Surf. Sci. 317, 672–681 (2014)

    Article  Google Scholar 

  30. K. Prabakar, H. Kim, Growth control of ZnO nanorod density by sol–gel method. Thin Solid Films 518, 136–138 (2010)

    Article  Google Scholar 

  31. M. Pudukudy, Z. Yaakob, Simple chemical synthesis of novel ZnO nanostructures: role of counter ions. Solid State Sci. 30, 78–88 (2014)

    Article  Google Scholar 

  32. N. Uma Sangari, S. Chitra Devi, Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method. J. Solid State Chem. 197, 483–488 (2013)

    Article  Google Scholar 

  33. W.D. Zhou, X. Wu, Y.C. Zhang, M. Zhang, Solvothermal synthesis of hexagonal ZnO nanorods and their photoluminescence properties. Mater. Lett. 61, 2054–2057 (2007)

    Article  Google Scholar 

  34. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang et al., Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202 (1–12) (2007)

  35. G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys. Status Solidi 3, 3577–3581 (2006)

    Article  Google Scholar 

  36. N. Rana, S. Chand, A.K. Gathania, Tailoring the structural and optical properties of ZnO by doping with Cd. Ceram. Int. 41, 12032–12037 (2015)

    Article  Google Scholar 

  37. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  38. W. Raza, M.M. Haque, M. Muneer, Synthesis of visible light driven ZnO: characterization and photocatalytic performance. Appl. Surf. Sci. 322, 215–224 (2014)

    Article  Google Scholar 

  39. Y. Fang, Z. Li, S. Xu, D. Han, D. Lu, Optical properties and photocatalytic activities of spherical ZnO and flower-like ZnO structures synthesized by facile hydrothermal method. J. Alloys Compd. 575, 359–363 (2013)

    Article  Google Scholar 

  40. R. Wahab, F. Khan, R.B. Singh, N.K. Kaushik, J. Ahmad, M.A. Siddiqui et al., Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis. Phys. E Low Dimens. Syst. Nanostruct. 69, 101–108 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank NIT Hamirpur for providing financial assistance to carry out the present work. Authors also thank CMSE NIT-Hamirpur for providing experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind K. Gathania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, N., Chand, S. & Gathania, A.K. Synthesis and characterization of flower-like ZnO structures and their applications in photocatalytic degradation of Rhodamine B dye. J Mater Sci: Mater Electron 27, 2504–2510 (2016). https://doi.org/10.1007/s10854-015-4051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4051-7

Keywords

Navigation