Skip to main content
Log in

Preparation and characterization of TiInVO6-nanomaterial using precipitation method and its multi applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present investigation we have reported the undoped TiO2 and doped TiInVO6 nanomaterials by simple precipitation method and sonication technique. The undoped TiO2 and doped TiInVO6 nanomaterials were characterized by HR-SEM with EDX, HR-TEM, XRD, FT-IR, FT-RAMAN, PL and UV–Vis DRS analysis. The photocatalytic activity of TiInVO6 nanomaterial was studied through the photodegradation of methylene blue (MB) under UV-light irradiation at 365 nm. The photodegradation of MB under various parameters have been studied. The photodegradation of MB was found to be follow pseudo-first-order kinetics. The quantum yield and formation of hydroxyl radical were confirmed and analysed by fluorescence technique. The electrochemical study of the prepared nonmaterial was discussed in detail. The antimicrobial activity of the prepared nanomaterials has also been investigated. The prepared TiInVO6 nanomaterial was found to be stable and reusable. It would be useful for multi applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Q.J. Xiang, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 41, 782–796 (2012)

    Article  Google Scholar 

  2. H.K. Shon, S. Phuntsho, S. Vigneswaran, Desalin. Water Treat. 225, 235–248 (2008)

    Article  Google Scholar 

  3. M.A. Fox, M.T. Dulay, Chem. Rev. 93, 341–357 (1993)

    Article  Google Scholar 

  4. N. Kislov, S.S. Srinivasan, Yu. Emirov, E.K. Stefanakos, Mater. Sci. Eng. B 153, 70–77 (2008)

    Article  Google Scholar 

  5. K.M. Tarquinio, N.K. Kothurkar, D.Y. Goswami, R.C. Sanders Jr, A.L. Zaritsky, A.M. LeVine, Int. J. Nanomed. 5, 177–183 (2010)

    Article  Google Scholar 

  6. H. Xu, H. Li, L. Xu, C. Wu, G. Sun, Y. Xu, J. Chu, Ind. Eng. Chem. Res. 48, 10771–10778 (2009)

    Article  Google Scholar 

  7. Y. Shen, M. Huang, Y. Huang, J. Lin, J. Wu, Alloys Compd. 496, 287–292 (2010)

    Article  Google Scholar 

  8. C. Zhang, Y.F. Zhu, Chem. Mater. 17, 3537–3545 (2005)

    Article  Google Scholar 

  9. G. Huang, Y. Zhu, CrystEngComm 14, 8076–8082 (2012)

    Article  Google Scholar 

  10. J. Kamalakkannan, V.L. Chandraboss, S. Prabha, S. Senthilvelan, RSC Adv. 5, 77000–77013 (2015)

    Article  Google Scholar 

  11. J. Kamalakkannan, V.L. Chandraboss, B. Loganathan, S. Prabha, B. Karthikeyan, S. Senthilvelan, Appl. Nanosci. (2015). doi:10.1007/s13204-015-0474-y

    Google Scholar 

  12. J. Kamalakkannan, V.L. Chandraboss, S. Prabha, B. Karthikeyan, S. Senthilvelan, Can. Chem. Trans. 3, 327–339 (2015)

    Google Scholar 

  13. C. Mondal, M. Ganguly, A. Sinha, J. Pal, R. Sahoo, T. Pal, CrystEngComm 15, 6745–6751 (2013)

    Article  Google Scholar 

  14. M. Masato, M. Yui, M. Yuichi, I. Keita, Chem. Commun. 47, 9591–9593 (2011)

    Article  Google Scholar 

  15. Y. Zhiyong, D. Laub, M. Bensimon, J. Kiwi, Inorganica Chim. Acta 361, 589–594 (2008)

    Article  Google Scholar 

  16. E. Hague, J.W. Jun, S.H. Jung, Hazard. Mater. 185, 507–511 (2011)

    Article  Google Scholar 

  17. Min Zeng, Korean Chem. Soc. 34, 3–953 (2013)

    Article  Google Scholar 

  18. Tanmay K. Ghorai, J. Mater. Res. Technol. 2, 10–17 (2013)

    Article  Google Scholar 

  19. H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089–5121 (2009)

    Article  Google Scholar 

  20. K.M. Joshi, V.S. Shrivastava, Int. J. Nanodimens. 2, 241–252 (2012)

    Google Scholar 

  21. L. Miao, S. Tanemura, S. Toh, K. Kaneko, M. Tanemura, J. Cryst. Growth 264, 246–252 (2004)

    Article  Google Scholar 

  22. X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, J.R. Lombardi, J. Phys. Chem. C 116, 8792–8797 (2012)

    Article  Google Scholar 

  23. M. Gotić, S. Musić, M. Ivanda, M. Šoufek, S. Popović, J. Mol. Struct. 744, 535–540 (2005)

    Google Scholar 

  24. J.A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, J. Mol. Catal. A Chem. 304, 28–32 (2009)

    Article  Google Scholar 

  25. S. Obregon, G. Colon, RSC Adv. 4, 6920–6926 (2014)

    Article  Google Scholar 

  26. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Catal. Sci. Technol. 2, 2319–2326 (2012)

    Article  Google Scholar 

  27. S. Balachandran, M. Swaminathan, J. Phys. Chem. C 116, 26306–26312 (2012)

    Article  Google Scholar 

  28. V.L. Chandraboss, L. Natanapatham, B. Karthikeyan, J. Kamalakkannan, S. Prabha, S. Senthilvelan, Mater. Res. Bull. 48, 3707–3712 (2013)

    Article  Google Scholar 

  29. M.A. Behnajady, N. Modirdshahla, M. Shokri, Chemosphere 55, 129–134 (2004)

    Article  Google Scholar 

  30. M.S. Mashkour, A.F. Al-Kaim, L.M. Ahmed, F.H. Hussein, Int. J. Chem. Sci. 9, 969–979 (2011)

    Google Scholar 

  31. S. Zhang, J. Li, M. Zeng, J. Li, J. Xu, X. Wang, Chem. Eur. J. 20, 9805–9812 (2014)

    Article  Google Scholar 

  32. V.L. Chandraboss, J. Kamalakkannan, S. Prabha, S. Senthilvelan, RSC Adv. 5, 25857–25869 (2015)

    Article  Google Scholar 

  33. Q. Xiang, J. Yu, M. Jaroniec, Phys. Chem. Chem. Phys. 13, 4853–4861 (2011)

    Article  Google Scholar 

  34. Y. Zhao, C.Z. Li, X.H. Liu, F. Gu, H.B. Jiang, W. Shao, L. Zhang, Y. He, Mater. Lett. 61, 79–83 (2007)

    Article  Google Scholar 

  35. P.M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films 358, 122–130 (2000)

    Article  Google Scholar 

  36. K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Electrochem. Commun. 2, 207–210 (2000)

    Article  Google Scholar 

  37. L. Wei Cheng, J. Chien Tsai, T. Yun Huang, C. Wei Huang, B. Unnikrishnan, Y. Wei Lin, Mater. Res. Express. 1, 025023 (2014)

    Article  Google Scholar 

  38. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir 29, 939–949 (2013)

    Article  Google Scholar 

  39. M. Muruganandham, K. Selvam, M.A. Swaminathan, J. Hazard. Mater. 144, 316–322 (2007)

    Article  Google Scholar 

  40. N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khataee, M.H. Rasoulifard, Int. J. Chem. Nucl. Metall. Mater. Eng. 1, 66–70 (2007)

    Google Scholar 

  41. Jia Liu, Haotian Yang, Weiwei Tan, Xiaowen Zhou, Yuan Lin, Electrochim. Acta 56, 396–400 (2010)

    Article  Google Scholar 

  42. Yu. Zhang, Lingling Wang, Bingkun Liu, Jiali Zhai, Haimei Fan, Dejun Wang Yanhong Lin Tengfeng Xie, Electrochim. Acta 56, 6517–6523 (2011)

    Article  Google Scholar 

  43. T. Matsunaga, R. Tomada, T. Nakajima, H. Wake, FEMS Microbiol. Lett. 29, 211–214 (1998)

    Article  Google Scholar 

  44. M.S.A. Shah, M. Nag, T. Kalagara, S. Singh, S.V. Manorama, Chem. Mater. 20, 2455–2460 (2008)

    Article  Google Scholar 

  45. H. Zhang, Q. Li, Y. Lu, J. Chem. Technol. Biotechnol. 80, 285–290 (2005)

    Article  Google Scholar 

  46. D. Brindha et al., Adv. Appl. Sci. Res. 6, 45–48 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambandam Senthilvelan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalakkannan, J., Chandraboss, V.L., Prabha, S. et al. Preparation and characterization of TiInVO6-nanomaterial using precipitation method and its multi applications. J Mater Sci: Mater Electron 27, 2488–2503 (2016). https://doi.org/10.1007/s10854-015-4050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4050-8

Keywords

Navigation