Skip to main content
Log in

Humidity-sensing properties of hierarchical ZnO/MWCNTs/ZnO nanocomposite film sensor based on electrostatic layer-by-layer self-assembly

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper demonstrated a resistive-type humidity sensor with hierarchical ZnO/MWCNTs/ZnO nanocomposite film coated. Hydrothermally synthesized ZnO nanorods and functionalized multi-walled carbon nanotubes (MWCNTs) were utilized to construct a humidity sensor by using electrostatic layer-by-layer (ELbL) self-assembly technique. The characterization results including scanning electron microscope and X-ray diffraction confirmed the successful formation of as-prepared nanostructures. The electrical properties of the sensing films were investigated under different deposition time in the ELbL self-assembly process. The humidity sensing behaviors of the ZnO/MWCNTs/ZnO hierarchical hybrid film were investigated in a wide relative humidity (RH) range. It is found that the sensor exhibited an excellent linear response with RH, small hysteresis, acceptable repeatability and swift response-recovery characteristics. The possible sensing mechanism for the presented sensor was attributed to the nanostructure of ZnO/MWCNTs/ZnO and swelling effects between interlayers. This study provided a benchmark for humidity sensor fabrication using ELbL self-assembly technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.T. Qiu, R. Tang, J. Zhu, J. Oiler, C.J. Yu, Z.Y. Wang, H.U. Yu, The effects of temperature, relative humidity and reducing gases on the ultraviolet response of ZnO based film bulk acoustic-wave resonator. Sens. Actuators, B 151, 360–364 (2011)

    Article  Google Scholar 

  2. C.M. Lin, Y.Y. Chen, V. Felmetsger, T. Riekkinen, D. Senesky, A. Pisaon, Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures. J. Micromech. Microeng. 23, 025019 (2013)

    Article  Google Scholar 

  3. A. Buvailo, Y.J. Xing, J. Hines, E. Borguet, Thin polymer film based rapid surface acoustic wave humidity sensors. Sens. Actuators, B 156, 444–449 (2011)

    Article  Google Scholar 

  4. Y. Zhu, J.C. Chen, H.M. Li, Y.H. Zhu, J.Q. Xu, Synthesis of mesoporous SnO2–SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators, B 193, 320–325 (2014)

    Article  Google Scholar 

  5. Y. Yao, X.D. Chen, X.Y. Li, X.P. Chen, N. Li, Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films. Sens. Actuators, B 191, 779–783 (2014)

    Article  Google Scholar 

  6. J. Xie, H. Wang, Y.H. Lin, Y. Zhou, Y.P. Wu, Highly sensitive humidity sensor based on quartz crystal microbalance coated with ZnO colloid spheres. Sens. Actuators, B 177, 1083–1088 (2013)

    Article  Google Scholar 

  7. Y. Yao, Y.J. Xue, Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuators, B 211, 52–58 (2015)

    Article  Google Scholar 

  8. Y. Yao, X.D. Chen, W.M. Ma, W.W. Ling, Quartz crystal microbalance humidity sensors based on nanodiamond sensing films. IEEE Trans. Nanotechnol. 13, 386–393 (2014)

    Article  Google Scholar 

  9. F.X. Liang, L.B. Luo, L.X. Zheng, H. Cheng, Y.Y. Li, TiO2 nanotube-based field effect transistors and their application as humidity sensors. Mater. Res. Bull. 47, 54–58 (2012)

    Article  Google Scholar 

  10. M. Zhuo, Y.J. Chen, J. Sun, H.M. Zhang, Humidity sensing properties of a single Sb doped SnO2 nanowire field effect transistor. Sens. Actuators, B 186, 78–83 (2013)

    Article  Google Scholar 

  11. D. Jung, J. Kim, G.S. Lee, Enhanced humidity-sensing response of metal oxide coated carbon nanotube. Sens. Actuators, A 223, 11–17 (2015)

    Article  Google Scholar 

  12. S. Jung, T. Ji, ZnO nanorod-based humidity sensors with fast response. IEEE Electron. Device Lett. 35, 960–962 (2014)

    Article  Google Scholar 

  13. J.-L. Hou, C.-H. Wu, T.-J. Hsueh, Self-biased ZnO nanowire humidity sensor vertically integrated on triple junction solar cell. Sens. Actuators, B 197, 137–141 (2014)

    Article  Google Scholar 

  14. J. Herrán, I. Fernández, E. Ochoteco, G. Cabañero, H. Grande, The role of water vapour in ZnO nanostructures for humidity sensing at room temperature. Sens. Actuators, B 198, 239–242 (2014)

    Article  Google Scholar 

  15. Q.Q. Jia, H.M. Ji, Y. Zhang, Y.L. Chen, X.H. Sun, Z.G. Jin, Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)

    Article  Google Scholar 

  16. S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators, B 202, 272–278 (2014)

    Article  Google Scholar 

  17. K.H. Kim, Z.G. Jin, Y. Abe, M. Kawamura, A comparative study on the structural properties of ZnO and Ni-doped ZnO nanostructures. Mater. Lett. 149, 8–11 (2015)

    Article  Google Scholar 

  18. C.S. Chen, X.D. Xie, G.J. Zhao, B. Zeng, X.T. Ning, S.Y. Cao, Y. Xiao, Y.P. Mei, X.M. Huang, Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanopaticles. Funct. Mater. Lett. 6, 1350062 (2013)

    Article  Google Scholar 

  19. D. Zhang, N. Yin, B. Xia, Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci.: Mater. Electron. 26, 5937–5945 (2015)

    Google Scholar 

  20. S. Biswas, G.P. Kar, D. Arora, S. Bose, A unique strategy towards high dielectric constant and low loss with multiwall carbon nanotubes anchored onto graphene oxide sheets. RSC Adv. 5, 24132–24138 (2015)

    Article  Google Scholar 

  21. H.D. Liu, Carbon nanotubes anchored with SnO2 nanosheets as anode for enhanced Li-ion storage. J. Mater. Sci.: Mater. Electron. 25, 3353–3357 (2014)

    Google Scholar 

  22. Y. Li, T.T. Wu, M.J. Yang, Humidity sensors based on the composite of multi-walled carbon nanotubes and crosslinked polyelectrolyte with good sensitivity and capability of detecting low humidity. Sens. Actuators, B 203, 63–70 (2014)

    Article  Google Scholar 

  23. X. Yun, J. Wang, L. Shen, H. Dou, X. Zhang, Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Adv. 5, 22173–22177 (2015)

    Article  Google Scholar 

  24. J.G. Tait, M.F.L. De Volder, D. Cheyns, P. Heremans, B.P. Rand, Absorptive carbon nanotube electrodes: consequences of optical interference loss in thin film solar cells. Nanoscale 7, 7259–7266 (2015)

    Article  Google Scholar 

  25. S. Fu, G. Yang, Y. Zhou, H. Pan, C.M. Wai, D. Du, Y. Lin, Ultrasonic enhanced synthesis of multi-walled carbon nanotube supported Pt–Co bimetallic nanoparticles as catalysts for the oxygen reduction reaction. RSC Adv. 5, 32685–32689 (2015)

    Article  Google Scholar 

  26. T. Das, S. Banerjee, K. Dasgupta, J.B. Joshi, V. Sudarsan, Nature of the Pd–CNT interaction in Pd nanoparticles dispersed on multi-walled carbon nanotubes and its implications in hydrogen storage properties. RSC Adv. 5, 41468–41474 (2015)

    Article  Google Scholar 

  27. I. Dube, D. Jiménez, G. Fedorov, A. Boyd, I. Gayduchenko, M. Paranjape, P. Barbara, Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors. Carbon 87, 330–337 (2016)

    Article  Google Scholar 

  28. D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators, B 197, 66–72 (2014)

    Article  Google Scholar 

  29. C.L. Cao, C.G. Hu, L. Fang, S.X. Wang, Y.S. Tian, C.Y. Pan, Humidity sensor based on multi-walled carbon nanotube thin films. J. Nanomater. 2011, 707303 (2011)

    Google Scholar 

  30. J. Lee, D. Cho, Y. Jeong, A resistive-type sensor based on flexible multi-walled carbon nanotubes and polyacrylic acid composite films. Solid-State Electron. 87, 80–84 (2013)

    Article  Google Scholar 

  31. F.S. Tsai, S.J. Wang, Shui-Jinn, Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets. Sens. Actuators, B 193, 280–287 (2014)

    Article  Google Scholar 

  32. N.F. Hsu, M. Chang, C.H. Lin, Synthesis of ZnO thin films and their application as humidity sensors. Microsyst. Technol. 19, 1737–1743 (2012)

    Article  Google Scholar 

  33. D. Zhang, J. Liu, H. Chang, A. Liu, B. Xia, Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv. 5, 18666–18672 (2015)

    Article  Google Scholar 

  34. X.J. Chen, J. Zhang, Z.L. Wang, Q. Yan, S.C. Hui, Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sens. Actuators, B 156, 631–636 (2011)

    Article  Google Scholar 

  35. Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators, B 149, 136–142 (2010)

    Article  Google Scholar 

  36. Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, H. Park, Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators, B 141, 441–446 (2009)

    Article  Google Scholar 

  37. G.H. Lu, L.E. Ocola, J.H. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20, 445502 (2009)

    Article  Google Scholar 

  38. G.H. Lu, L.E. Ocola, J.H. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 94, 083111 (2009)

    Article  Google Scholar 

  39. F. Barroso-Bujans, S. Cerveny, A. Alegra, J. Colmenero, Sorption and desorption behavior of water and organic solvents from graphite oxide. Carbon 48, 3277–3286 (2010)

    Article  Google Scholar 

  40. T. Fei, K. Jiang, F. Jiang, R. Mu, T. Zhang, Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J. Appl. Polym. Sci. 131, 3972 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51407200), the Science and Technology Plan Project of Shandong Province (Grant No. 2014GSF117035), the Science and Technology Development Plan Project of Qingdao (Grant No. 13-1-4-179-jch), the Open Fund of National Engineering Laboratory for Ultra High Voltage Engineering Technology (Kunming, Guangzhou) (Grant No. NEL201518), the Fundamental Research Funds for the Central Universities of China (Grant No. 15CX05041A), and the Science and Technology Project of Huangdao Zone, Qingdao, China (Grant No. 2014-1-51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzhi Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Yin, N., Xia, B. et al. Humidity-sensing properties of hierarchical ZnO/MWCNTs/ZnO nanocomposite film sensor based on electrostatic layer-by-layer self-assembly. J Mater Sci: Mater Electron 27, 2481–2487 (2016). https://doi.org/10.1007/s10854-015-4049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4049-1

Keywords

Navigation