Skip to main content

Advertisement

Log in

Effect of CaO content on structure and properties of low temperature co-fired glass–ceramic in the Li2O–Al2O3–SiO2 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glass–ceramics based on the Li2O–Al2O3–SiO2 system were synthesized by the conventional melt-quenching technology. The glass–ceramics were designed based on silicon oxide replacement with simultaneous increasing calcium oxide. The effects of CaO on the microstructure, densification, thermal, dielectric and mechanical properties of the glass–ceramics were investigated. This glass–ceramic has a low softening point and could be sintered at a low temperature of 800 °C. The addition of CaO promotes the formation of the CaMgSi2O6 phase and could improve the microstructure, densification and mechanical property. The coefficient of thermal expansion of the glass–ceramic increases with the content of CaO and could match that of silicon chips. The sample LAS2 (2.1 wt% CaO) sintered at 800 °C for 0.5 h exhibits excellent properties: high density of 2.48 g/cm3, low dielectric constant of 6.8 and loss of 3.7 × 10−3, high three point bending strength of 154 MPa, and low CTE value of 1.9 × 10−6/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.H. Chen, X.Y. Liu, Fabrication, characterization and sintering of glass-ceramics for low-temperature co-fired ceramic substrates. J. Mater. Sci. Mater. Electron. 15(9), 595–600 (2004)

    Article  Google Scholar 

  2. R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11(1), 54–62 (2001)

    Article  Google Scholar 

  3. J. Mürbe, J. Töpfer, High permeability Ni–Cu–Zn ferrites through additive-free low-temperature sintering of nanocrystalline powders. J. Eur. Ceram. Soc. 32(5), 1091–1098 (2012)

    Article  Google Scholar 

  4. K.A. Peterson, K.D. Patel, C.K. Ho, S.B. Rohde, C.D. Nordquist, C.A. Walker, B.D. Wroblewski, M. Okandan, Novel microsystem applications with new techniques in low-temperature co-fired ceramics. Int. J. Appl. Ceram. Tech. 2(5), 345–363 (2005)

    Article  Google Scholar 

  5. S.-H. Wi, Y.-B. Sun, I.-S. Song, S.-H. Choa, I.-S. Koh, Y.-S. Lee, J.-G. Yook, Package-level integrated antennas based on LTCC technology. IEEE Trans. Antenns Propag. 54(8), 2190–2197 (2006)

    Article  Google Scholar 

  6. O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, W.A. Schiller, LTCC glass–ceramic composites for microwave application. J. Eur. Ceram. Soc. 21(10–11), 1693–1697 (2001)

    Article  Google Scholar 

  7. H. Jantunen, R. Rautioaho, A. Uusimaki, S. Leppavuori, Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. J. Eur. Ceram. Soc. 20(14–15), 2331–2336 (2000)

    Article  Google Scholar 

  8. A. Sutono, D. Heo, Y.J.E. Chen, J. Laskar, High-Q LTCC-based passive library for wireless system-on-package (SOP) module development. IEEE Trans. Microw. Theory. 49(10), 1715–1724 (2001)

    Article  Google Scholar 

  9. L.K. Yeung, K.L. Wu, A compact second-order LTCC bandpass filter with two finite transmission zeros. IEEE Trans. Microw. Theory. 51(2), 337–341 (2003)

    Article  Google Scholar 

  10. T. Ogiwara, Y. Noda, O. Kimura, Low-temperature sintering of beta-spodumene ceramics using Li2O–GeO2 as a sintering additive. J. Am. Ceram. Soc. 96(8), 2577–2582 (2013)

    Article  Google Scholar 

  11. R.R. Tummala, Ceramic and glass–ceramic packaging in the 1990s. J. Am. Ceram. Soc. 74(5), 895–908 (1991)

    Article  Google Scholar 

  12. S.B. Wen, S. Yang, J.M. Chen, N.C. Wu, M.C. Wang, Preparation of single phase beta-spodumene powders by sol–gel process. J. Ceram. Soc. Jpn. 107(12), 1128–1132 (1999)

    Article  Google Scholar 

  13. O.R.K. Montedo, D. Hotza, A.P.N. de Oliveira, R. Meszaros, N. Travitzky, P. Greil, Crystallisation kinetics of a beta-spodumene-based glass ceramic. Adv. Mater. Sci. Eng. 2012, 525428 (2012). doi:10.1155/2012/525428

    Article  Google Scholar 

  14. L. Xia, X. Wang, G. Wen, B. Zhong, L. Song, Nearly zero thermal expansion of beta-spodumene glass ceramics prepared by sol–gel and hot pressing method. Ceram. Int. 38(6), 5315–5318 (2012)

    Article  Google Scholar 

  15. S. Kemethmüller, M. Hagymasi, A. Stiegelschmitt, A. Roosen, Viscous flow as the driving force for the densification of low-temperature co-fired ceramics. J. Am. Ceram. Soc. 90(1), 64–70 (2007)

    Article  Google Scholar 

  16. E.S. Kim, W.J. Yeo, Thermal properties of CaMgSi2O6 glass–ceramics with Al2O3. Ceram. Int. 38(Suppl 1), S547–S550 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Qing, Z., Li, Y. et al. Effect of CaO content on structure and properties of low temperature co-fired glass–ceramic in the Li2O–Al2O3–SiO2 system. J Mater Sci: Mater Electron 27, 2455–2459 (2016). https://doi.org/10.1007/s10854-015-4045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4045-5

Keywords

Navigation