Skip to main content

Advertisement

Log in

Flexible organic photo-thermogalvanic cell for low power applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we report an organic semiconductor based flexible thermogalvanic cell for conversion of heat and light energy into electric power. This thermogalvanic cell has been fabricated using a eco-friendly, affordable and commercially available organic material known as an orange dye (C17H17N5O2), which is soluble in water. The thermogalvanic cell consists of a Carbon/aqueous solution of orange dye/Carbon structure. The cell contains a flexible polymer tube casing, filled with a 5 wt% organic semiconductor orange dye aqueous solution and carbon-electrodes. Gradient of temperature (ΔT) up to 28 K was created by low power electric heater and up to 6 K by illumination. It was found that at ΔT = 8 K, the open-circuit voltage (V oc ), short-circuit current (I sc ) and Seebeck coefficient were in the range of −(31–32) mV, −(2.6–2.7) µA and −(3.8–3.9) mV/K, respectively. The thermogalvanic cell holds the promise of potential use in low-power applications (e.g. medical) and temperature gradient measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.J. Kim, J.H. We, B.J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 1959–1965 (2014)

    Article  Google Scholar 

  2. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Optimization of the thermoelectric figure of merit in the conducting polymer poly (3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011)

    Article  Google Scholar 

  3. Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, D. Zhu, Organic thermoelectric materials and devices based on p-and n-type poly (metal 1, 1, 2, 2-ethenetetrathiolate) s. Adv. Mater. 24, 932–937 (2012)

    Article  Google Scholar 

  4. K. Lee, S. Cho, S.H. Park, A. Heeger, C.-W. Lee, S.-H. Lee, Metallic transport in polyaniline. Nature 441, 65–68 (2006)

    Article  Google Scholar 

  5. A. Eftekhari, M. Kazemzad, M. Keyanpour-Rad, Significant effect of dopant size on nanoscale fractal structure of polypyrrole film. Polym. J. 38, 781–785 (2006)

    Article  Google Scholar 

  6. A. Gunawan, C.-H. Lin, D.A. Buttry, V. Mujica, R.A. Taylor, R.S. Prasher, P.E. Phelan, Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments. Nanoscale Microscale Thermophys. Eng. 17, 304–323 (2013)

    Article  Google Scholar 

  7. H.A. Liebhofsky, in Thermogalvanic cell, US 2882329 A Patent (1959)

  8. Y. Kuzminskii, V. Zasukha, G. Kuzminskaya, Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cells. J. Power Sources 52, 231–242 (1994)

    Article  Google Scholar 

  9. T. Quickenden, Y. Mua, A review of power generation in aqueous thermogalvanic cells. J. Electrochem. Soc. 142, 3985–3994 (1995)

    Article  Google Scholar 

  10. J. Josserand, V. Devaud, G. Lagger, H. Jensen, H.H. Girault, Hydrovoltaic cells. Part II: thermogalvanic cells and numerical simulations of thermal diffusion potentials. J. Electroanal. Chem. 565, 65–75 (2004)

    Article  Google Scholar 

  11. M. Bonetti, S. Nakamae, M. Roger, P. Guenoun, Huge Seebeck coefficients in nonaqueous electrolytes. J. Chem. Phys. 134, 114513 (2011)

    Article  Google Scholar 

  12. S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989)

    Article  Google Scholar 

  13. S.A. Moiz, M.M. Ahmed, K.S. Karimov, Estimation of electrical parameters of OD organic semiconductor diode from measured I–V characteristics. ETRI J. 27, 319 (2005)

    Article  Google Scholar 

  14. K.S. Karimov, M.H. Sayyad, M. Ali, M.N. Khan, S.A. Moiz, K.B. Khan, H. Farah, Z.M. Karieva, Electrochemical properties of Zn/orange dye aqueous solution/carbon cell. J. Power Sources 155, 475–477 (2006)

    Article  Google Scholar 

  15. A. Elahi, M. Sayyad, K.S. Karimov, K. Zakaullah, M. Saleem, The photo-electrical behavior of n-Si/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass electrochemical sensor. Optoelectron. Adv. Mater. 1, 333–338 (2007)

    Google Scholar 

  16. K.S. Karimov, I. Qazi, Z.M. Karieva, T.A. Khan, I. Murtaza, Electrical properties of orange dye aqueous solution. Kuwait J. Sci. Eng. 35, 27–36 (2008)

    Google Scholar 

  17. X. Niu, J. Yu, S. Wang, Experimental study on low-temperature waste heat thermoelectric generator. J. Power Sources 188, 621–626 (2009)

    Article  Google Scholar 

  18. W. Glatz, S. Muntwyler, C. Hierold, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens. Actuators A 132, 337–345 (2006)

    Article  Google Scholar 

  19. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, Oxford, 2012)

    Google Scholar 

  20. M. Sumino, K. Harada, M. Ikeda, S. Tanaka, K. Miyazaki, C. Adachi, Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices. Appl. Phys. Lett. 99, 093308 (2011)

    Article  Google Scholar 

  21. N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L.-J. Li, Y. Zhao, T. Yu, H. Zhang, Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano 5, 2749–2755 (2011)

    Article  Google Scholar 

  22. W. Zhao, S. Fan, N. Xiao, D. Liu, Y.Y. Tay, C. Yu, D. Sim, H.H. Hng, Q. Zhang, F. Boey, Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ. Sci. 5, 5364–5369 (2012)

    Article  Google Scholar 

  23. J. Male, Hall effect measurement in semiconducting chalcogenide glasses and liquids. Br. J. Appl. Phys. 18, 1543 (1967)

    Article  Google Scholar 

  24. D.B. Hibbert, Introduction to electrochemistry (Macmillan, London, 1993)

    Book  Google Scholar 

  25. T.J. Abraham, D.R. MacFarlane, R.H. Baughman, L. Jin, N. Li, J.M. Pringle, Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy. Electrochim. Acta 113, 87–93 (2013)

    Article  Google Scholar 

  26. O.P. Golovin, in Method for measurement of Seebeck coefficient, Patent SU 452775 (1972)

  27. D. Vigolo, S. Buzzaccaro, R. Piazza, Thermophoresis and thermoelectricity in surfactant solutions. Langmuir 26, 7792–7801 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This publication was made possible by PDRA Grant No. PDRA1-0117-14109 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author contributions

K.K., N.F. and Z.A. designed the experiment. Z.A. analyzed the experimental data and wrote the manuscript text. K.K. and F.T. reviewed the manuscript content. All authors participated in the discussion and commented on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, Z., Karimov, K.S., Fatima, N. et al. Flexible organic photo-thermogalvanic cell for low power applications. J Mater Sci: Mater Electron 27, 2442–2447 (2016). https://doi.org/10.1007/s10854-015-4043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4043-7

Keywords

Navigation