Skip to main content
Log in

Characteristics of Fe- and Mg-doped CuCrO2 nanocrystals prepared by hydrothermal synthesis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Cu(Cr1−xFex)O2 and Cu(Cr1−yMgy)O2 (0.0 ≤ x,y ≤ 0.05) nanocrystalline samples with high surface area were prepared using hydrothermal synthesis. The effect of Fe3+ substitution for Cr3+ on the structural, morphological, optical and electrical characteristics of CuCrO2 nanoparticles was investigated in comparison with Mg-doped samples. X-ray diffraction study showed that the solubility limit was around 3 at% for both dopants and beyond this concentration the formation of spinel phases was observed. The incorporation of the tri- and divalent dopants induced a slight expansion in a- and c-parameters. Transmission electron microscopy examination indicated that the average crystallite size (12 nm for undoped) decreased with increasing doping amount of up to x = 0.03 (8.5 nm) and y = 0.05 (7 nm). Moreover, the introduction of Fe and Mg led to an increase in the size distribution of the crystallites. All samples exhibited transmittance above 80 % at 700 nm wavelength and transmittance was enhanced for all doping concentrations except for x = 0.05. A similar trend was also observed for the direct band gaps, where only 5 at% Fe doping induced a red-shift of Eg. The direct band gaps were estimated to be 3.09 eV for x = 0.03 and 3.07 eV for y = 0.03. At room temperature, the minimum achieved electrical resistivity was measured to be 6.4 and 0.068 kΩ cm for the samples with x,y = 0.03, respectively. These values are lower by a factor of ~2 and 166 than that of the undoped CuCrO2 sample (11.8 kΩ cm). All samples behaved like semiconductors, and the thermally activated energy for Cu(Cr0.97Mg0.03)O2 and Cu(Cr0.97Fe0.03)O2 pellets were found to be 45.40 and 92.5 meV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.N. Banerjee, K.K. Chattopadhyay, Prog. Cryst. Growth Charact. 50, 52 (2005)

    Article  Google Scholar 

  2. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997)

    Article  Google Scholar 

  3. S. Nandy, A. Banerjee, E. Fortunato, R. Martins, Rev. Adv. Sci. Eng. 2, 273 (2013)

    Article  Google Scholar 

  4. B. Szyszka, W. Dewald, S.K. Gurram, A. Pflug, C. Schulz, M. Siemers, V. Sittinger, S. Ulrich, Curr. Appl. Phys. 12, 2 (2012)

    Article  Google Scholar 

  5. M. Neumann-Spallart, S.P. Pai, R. Pinto, Thin Solid Films 515, 8641 (2007)

    Article  Google Scholar 

  6. H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, H. Hosono, J. Electroceram. 4, 407 (2000)

    Article  Google Scholar 

  7. S. Götzendörfer, C. Polenzky, S. Ulrich, P. Löbmann, Thin Solid Films 518, 1153 (2009)

    Article  Google Scholar 

  8. H.F. Jiang, X.B. Zhu, H.C. Lei, G. Li, Z.R. Yang, W.H. Song, J.M. Dai, Y.P. Sun, Y.K. Fu, Thin Solid Films 519, 2559 (2011)

    Article  Google Scholar 

  9. S.Y. Zheng, G.S. Jiang, J.R. Su, C.F. Zhu, Mater. Lett. 60, 3871 (2006)

    Article  Google Scholar 

  10. H.-Y. Chen, C.-C. Yang, Surf. Coat. Technol. 231, 277 (2013)

    Article  Google Scholar 

  11. T. Elkhouni, M. Amami, C.V. Colin, P. Strobel, A.B. Salah, J. Magn. Magn. Mater. 330, 101 (2013)

    Article  Google Scholar 

  12. T. Okuda, T. Onoe, Y. Beppu, N. Terada, T. Doi, S. Miyasaka, Y. Tokura, J. Magn. Magn. Mater. 310, 890 (2007)

    Article  Google Scholar 

  13. Y. Wang, Y. Gu, T. Wang, W. Shi, J. Alloys Compd. 509, 5897 (2011)

    Article  Google Scholar 

  14. T.-W. Chiu, S.-W. Tsai, Y.-P. Wang, K.-H. Hsu, Ceram. Int. 38, 673 (2012)

    Article  Google Scholar 

  15. R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, J. Appl. Phys. 89, 8022 (2001)

    Article  Google Scholar 

  16. X. Zhou, F. Lin, W. Shi, A. Liu, J. Alloys Compd. 614, 221 (2014)

    Article  Google Scholar 

  17. M. Amami, C.V. Colin, P. Strobel, A.B. Salah, Phys. B 406, 2182 (2011)

    Article  Google Scholar 

  18. F. Lin, W. Shi, A. Liu, J. Alloys Compd. 529, 21 (2012)

    Article  Google Scholar 

  19. C. Gao, F. Lin, X. Zhou, W. Shi, A. Liu, J. Alloys Compd. 565, 154 (2013)

    Article  Google Scholar 

  20. F. Lin, C. Gao, X. Zhou, W. Shi, A. Liu, J. Alloys Compd. 581, 502 (2013)

    Article  Google Scholar 

  21. K. Park, K.Y. Ko, H.C. Kwon, S. Nahm, J. Alloys Compd. 437, 1 (2007)

    Article  Google Scholar 

  22. K. Hayashi, K. Sato, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 47, 59 (2008)

    Article  Google Scholar 

  23. Z. Deng, X. Fang, D. Li, S. Zhou, R. Tao, W. Dong, T. Wang, G. Meng, X. Zhu, J. Alloys Compd. 484, 619 (2009)

    Article  Google Scholar 

  24. Y. Ma, X. Zhou, Q. Ma, A. Litke, P. Liu, Y. Zhang, C. Li, E.J.M. Hensen, Catal. Lett. 144, 1487 (2014)

    Article  Google Scholar 

  25. S. Saadi, A. Bouguelia, M. Trari, Sol. Energy 80, 272 (2006)

    Article  Google Scholar 

  26. D. Xiong, Z. Xu, X. Zeng, W. Zhang, W. Chen, X. Xu, M. Wang, Y.-B. Cheng, J. Mater. Chem. 22, 24760 (2012)

    Article  Google Scholar 

  27. X.B. Xu, J. Cui, J.B. Han, J.P. Zhang, Y.B. Zhang, L. Luan, G. Alemu, Z. Wang, Y. Shen, D.H. Xiong, W. Chen, Z.H. Wei, S.H. Yang, B. Hu, Y.B. Cheng, M.K. Wang, Sci. Rep-UK. 4, 3961 (2014)

    Google Scholar 

  28. D.H. Xiong, W.J. Zhang, X.W. Zeng, Z. Xu, W. Chen, J. Cui, M.K. Wang, L.C. Sun, Y.B. Cheng, Chemsuschem 6, 1432 (2013)

    Article  Google Scholar 

  29. J. Wang, P. Zheng, D. Li, Z. Deng, W. Dong, R. Tao, X. Fang, J. Alloys Compd. 509, 5715 (2011)

    Article  Google Scholar 

  30. T.-W. Chiu, Y.-T. Chen, Ceram. Int. 41, 407 (2015)

    Article  Google Scholar 

  31. S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, X. Zhu, J. Cryst. Growth 310, 5375 (2008)

    Article  Google Scholar 

  32. M. Miclau, D. Ursu, S. Kumar, I. Grozescu, J. Nanopart. Res. 14, 1110 (2012)

    Article  Google Scholar 

  33. D. Friedrich, C. Wockel, S. Küsel, R. Konrath, H. Krautscheid, R. Denecke, B. Abel, Am. J. Nano Res. Appl. 2, 53 (2014)

    Google Scholar 

  34. D.H. Ursu, M. Miclău, R. Bănică, I. Grozescu, Phys. Scripta. T157, 014053 (2013)

    Article  Google Scholar 

  35. A. Maignan, C. Martin, R. Fresard, V. Eyert, E. Guilmeau, S. Hebert, M. Poienar, D. Pelloquin, Solid State Commun. 149, 962 (2009)

    Article  Google Scholar 

  36. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  37. A. Barnabé, Y. Thimont, M. Lalanne, L. Presmanes, P. Tailhades, J. Mater. Chem. C 3, 6012 (2015)

    Google Scholar 

  38. P.W. Sadik, M. Ivill, V. Craciun, D.P. Norton, Thin Solid Films 517, 3211 (2009)

    Article  Google Scholar 

  39. Y. Ono, K.-I. Satoh, T. Nozaki, T. Kajitani, Jpn. J. Appl. Phys. 46, 1071 (2007)

    Article  Google Scholar 

  40. R. Bywalez, S. Gotzendorfer, P. Lobmann, J. Mater. Chem. 20, 6562 (2010)

    Article  Google Scholar 

  41. V.M. Ustyantsev, V.P. Marevich, G.G. Lopachok, Inorg. Mater. 16, 496 (1980)

    Google Scholar 

  42. D. Li, X.D. Fang, Z.H. Deng, W.W. Dong, R.H. Ta, S. Zhou, J.M. Wang, T. Wang, Y.P. Zha, X.B. Zhu, J. Alloys Compd. 486, 462 (2009)

    Article  Google Scholar 

  43. J.I. Pankove, Optical Processes in Semiconductors (Prentice Hall, Englewood Cliffs, 1971)

    Google Scholar 

  44. R.S. Yu, D.H. Hu, Ceram. Int. 41, 9383 (2015)

    Article  Google Scholar 

  45. K. Oshiro, K. Akai, M. Matsuura, Phys. Rev. B 59, 10850 (1999)

    Article  Google Scholar 

  46. N. Goswami, D.K. Sharma, Phys. E 42, 1675 (2010)

    Article  Google Scholar 

  47. Y. Kayanuma, Phys. Rev. B 38 9797 (1988)

    Article  Google Scholar 

  48. S. Gotzendorfer, P. Lobmann, J. Sol-Gel Sci. Technol. 57, 157 (2011)

    Article  Google Scholar 

  49. E. Guilmeau, M. Poienar, S. Kremer, S. Marinel, S. Hebert, R. Fresard, A. Maignan, Solid State Commun. 151, 1798 (2011)

    Article  Google Scholar 

  50. Q.G. Meng, S.F. Lu, S.H. Lu, Y. Xiang, J. Sol-Gel Sci. Technol. 63, 1 (2012)

    Article  Google Scholar 

  51. N.K. Liu, B.S. Zhu, J.S. Luo, Semiconductor Physics (Electronic Industry Press, Beijing, 2008)

    Google Scholar 

Download references

Acknowledgments

Support for this work is provided by the Scientific Research Foundation (BAP) of Selçuk University (Project Number 14401104),TUBITAK MAG (Project Number 214M410) and Academic Staff Training Program (ÖYP) (Project Number 2013-ÖYP-087) which authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Cihan Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, İ.C., Sevindik, M.A. & Akyıldız, H. Characteristics of Fe- and Mg-doped CuCrO2 nanocrystals prepared by hydrothermal synthesis. J Mater Sci: Mater Electron 27, 2404–2411 (2016). https://doi.org/10.1007/s10854-015-4038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4038-4

Keywords

Navigation