Skip to main content
Log in

Growth of high quality CH3NH3PbI3 thin films prepared by modified dual-source vapor evaporation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a high quality CH3NH3PbI3 thin film prepared by modified dual-source vapor evaporation was proposed. An ultra-thin PbI2 layer was deposited firstly, and then CH3NH3I and PbI2 were evaporated simultaneously to form CH3NH3PbI3 thin film. The results show that flat, uniform, smooth, less porous and good crystallinity perovskite thin films without impure phase are formed by the modified dual-source vapor evaporation. The ratios of Pb/I accord with the nominal MAPbI3 stoichiometry and the band gaps are about 1.60 eV close to the theoretical value of 1.55 eV. The properties of CH3NH3PbI3 thin film fabricated by this method are suitable for perovskite solar cells applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  2. N.J. Jeon, J.H. Noh, W.S. Yang et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)

    Article  Google Scholar 

  3. Q. Wang, H. Chen, G. Liu et al., Control of organic–inorganic halide perovskites in solid-state solar cells: a perspective. Sci. Bull. 60, 405–418 (2015)

    Article  Google Scholar 

  4. D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc., Dalton Trans. 1, 1–12 (2001)

    Article  Google Scholar 

  5. D. Shi, V. Adinolfi, R. Comin et al., Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)

    Article  Google Scholar 

  6. Z. Xiao, Y. Yuan, Y. Shao et al., Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015)

    Article  Google Scholar 

  7. M. Xiao, F. Huang, W. Huang et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 53, 9898–9903 (2014)

    Article  Google Scholar 

  8. H. Zhou, Q. Chen, G. Li et al., Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)

    Article  Google Scholar 

  9. J.H. Heo, S.H. Im, J.H. Noh et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486–491 (2013)

    Article  Google Scholar 

  10. J. Burschka, N. Pellet, S.J. Moon et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  11. G.E. Eperon, V.M. Burlakov, P. Docampo et al., Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014)

    Article  Google Scholar 

  12. A. Dualeh, N. Tétreault, T. Moehl et al., Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014)

    Article  Google Scholar 

  13. Q. Lin, A. Armin, R.C.R. Nagiri et al., Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2014)

    Article  Google Scholar 

  14. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  Google Scholar 

  15. L.K. Ono, S. Wang, Y. Kato et al., Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 7, 3989–3993 (2014)

    Article  Google Scholar 

  16. G.-X. Liang, P. Fan, J.-T. Luo et al., A promising unisource thermal evaporation forin situfabrication of organolead halide perovskite CH3NH3PbI3 thin film. Prog. Photovoltaics Res. Appl. 22, 1 (2015). doi:10.1002/pip.2632

    Google Scholar 

  17. A. Ng, Z.W. Ren, Q. Shen et al., Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers. J. Mater. Chem. A 3, 9223–9231 (2015)

    Article  Google Scholar 

  18. Q. Chen, H. Zhou, Z. Hong et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014)

    Article  Google Scholar 

  19. Y. Zhao, K. Zhu, CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014)

    Article  Google Scholar 

  20. H.B. Kim, H. Choi, J. Jeong et al., Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6, 6679–6683 (2014)

    Article  Google Scholar 

  21. J. He, L. Sun, Y. Chen et al., Influence of sulfurization pressure on Cu2ZnSnS4 thin films and solar cells prepared by sulfurization of metallic precursors. JPS 273, 600–607 (2015)

    Google Scholar 

  22. F. Huang, Y. Dkhissi, W. Huang et al., Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10–18 (2014)

    Article  Google Scholar 

  23. T. Baikie, Y. Fang, J.M. Kadro et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013)

    Article  Google Scholar 

  24. J. Shi, Y. Luo, H. Wei et al., Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 9711–9718 (2014)

    Article  Google Scholar 

  25. J. Müller, J. Nowoczin, H. Schmitt, Composition, structure and optical properties of sputtered thin films of CuInSe2. Thin Solid Films 496, 364–370 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61404086), Basical Research Program of Shenzhen (JCYJ20150324140036866), the special fund of the central finance for the development of local Universities (Grant No. 000022070150), the innovation development fund project of graduate student 2015 (Grant No. 0003600206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Fan or Guang-xing Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Gu, D., Liang, Gx. et al. Growth of high quality CH3NH3PbI3 thin films prepared by modified dual-source vapor evaporation. J Mater Sci: Mater Electron 27, 2321–2327 (2016). https://doi.org/10.1007/s10854-015-4028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4028-6

Keywords

Navigation