Skip to main content
Log in

Lattice distortion and electrical properties of x(Na0.5K0.5)NbO3–(1 − x)BaTiO3 dielectrics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric and insulating properties of x(Na0.5K0.5)NbO3–(1 − x)BaTiO3 (NKN-BT) with an NKN content between 0.00 ≤ x ≤ 0.10 have been investigated through structural and carrier transfer analysis. Within the specimens that have less than x = 0.10 in the second phase, improved electrical properties were manifested through the increasing NKN content, and microstructural homogenization and refinement of grain size were observed. The dielectric constant was about 94 % higher in the specimen with x = 0.06, and the insulation resistance had a maximum as 1.896 × 1012 Ω in the specimen with x = 0.08. It is proposed that an oxygen vacancy generated at the A-site and leading the degradation of insulation resistance decreased, due to the compensation for the conduction electron generated at the B-site. Also, according to the NKN content, lattice parameter changed with decreasing the tetragonality (c/a). Through the data of Ti K-edge extended X-ray absorption fine structure, the distortion of the crystal structure was revealed and local strain and TiO6 octahedra distortion by off-center displacement of Ti4+ accompanied this finding, due to the substitution of aliovalent cations in the lattice. These decreased the mobility of oxygen vacancies, which led to improved temperature stability and insulation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7, 25 (2001)

    Article  Google Scholar 

  2. Y. Tsur, A. Hitomi, I. Scrymgeour, C.A. Randall, Jpn. J. Appl. Phys. 40, 255 (2001)

    Article  Google Scholar 

  3. M.A. Alam, L. Zuga, M.G. Pecht, Ceram. Int. 38, 6091 (2012)

    Article  Google Scholar 

  4. T. Li, K. Yang, R. Xue, Z. Chen, J. Mater. Sci.: Mater. Electron. 22, 838 (2011)

    Google Scholar 

  5. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 531 (2001)

    Article  Google Scholar 

  6. J.S. Kim, H.S. Lee, Mater. Lett. 92, 39 (2013)

    Article  Google Scholar 

  7. J.Y. Ha, J.S. Ryu, H.S. Lee, Appl. Phys. Lett. 104, 262904 (2014)

    Article  Google Scholar 

  8. R. Zuo, S. Su, J. Fu, Z. Xu, J. Mater. Sci.: Mater. Electron. 20, 469 (2009)

    Google Scholar 

  9. H. Cheng, W. Zhou, H. Du, F. Luo, W. Wang, J. Mater. Sci.: Mater. Electron. 26, 9097 (2015)

    Google Scholar 

  10. H.J. Lee, H. Ryu, M.S. Bae, Y.K. Cho, J. Am. Ceram. Soc. 89, 3529 (2006)

    Article  Google Scholar 

  11. F. Kröger, H. Vink, in Solid State Physics, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1956), p. 307

    Google Scholar 

  12. W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, B.A. Tuttle, J. Am. Ceram. Soc. 79, 536 (1996)

    Article  Google Scholar 

  13. S. Sato, Y. Nakano, A. Sato, T. Nomura, Jpn. J. Appl. Phys. 36, 6016 (1997)

    Article  Google Scholar 

  14. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109, 475 (2008)

    Article  Google Scholar 

  15. K. Kakimoto, I. Masuda, H. Ohsato, Jpn. J. Appl. Phys. 42, 6102 (2003)

    Article  Google Scholar 

  16. D. Li, M.A. Subramanian, Solid State Sci. 2, 507 (2000)

    Article  Google Scholar 

  17. S. Sato, Y. Nakano, A. Sato, T. Nomura, J. Eur. Ceram. Soc. 19, 1061 (1999)

    Article  Google Scholar 

  18. M. Benlahrache, N. Benhamla, S. Achour, J. Eur. Ceram. Soc. 24, 1493 (2004)

    Article  Google Scholar 

  19. R. López-Juárez, R. Castañeda-Guzmán, M. Villafuerte-Castrejón, Ceram. Int. 40, 14757 (2014)

    Article  Google Scholar 

  20. W. Wang, L. Tang, W. Bai, B. Shen, J. Zhai, J. Mater. Sci.: Mater. Electron. 25, 3601 (2014)

    Google Scholar 

  21. D. Kim, J. Kim, T. Noh, J. Ryu, Y. Kim, H. Lee, Curr. Appl. Phys. 12, 952 (2012)

    Article  Google Scholar 

  22. G. Li, X.Q. Wu, W. Ren, P. Shi, X.F. Chen, X. Yao, Ceram. Int. 38, S279 (2012)

    Article  Google Scholar 

  23. Y. Sakabe, N. Wada, T. Hiramatsu, T. Tonogaki, Jpn. J. Appl. Phys. 41, 6922 (2002)

    Article  Google Scholar 

  24. L.V. Leonel, A. Righi, W.N. Mussel, J.B. Silva, N.D.S. Mohallem, Ceram. Int. 37, 1259 (2011)

    Article  Google Scholar 

  25. K.P.K. Kumar, J.W. Chiou, H.M. Tsai, C.W. Pao, J.C. Jan, P.C. Hsu, D.C. Ling, F.Z. Chein, W.F. Pong, M.-H. Tsai, J.F. Lee, J. Phys.: Condens. Matter 17, 4197 (2005)

    Google Scholar 

  26. M.P. Lemeshko, E.S. Nazarenko, A.A. Gonchar, L.A. Reznichenko, T.I. Nedoseykina, A.A. Novakovich, O. Mathon, Y. Joly, R.V. Vendrinskii, Phys. Rev. B 76, 134106 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014R1A2A1A11051377). We are also especially appreciative to Ms. Mary Van Tyne for her language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heesoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, H. Lattice distortion and electrical properties of x(Na0.5K0.5)NbO3–(1 − x)BaTiO3 dielectrics. J Mater Sci: Mater Electron 27, 2315–2320 (2016). https://doi.org/10.1007/s10854-015-4027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4027-7

Keywords

Navigation