Skip to main content
Log in

Cu doping effect on the resistive switching behaviors of CoFe2O4 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spin-coated CuxCo1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, and 0.8) thin films were prepared on Pt/TiO2/SiO2/Si substrates. Pt/CuxCo1−xFe2O4/Pt structures were fabricated to investigate the effect of Cu doping concentration on the resistive switching behaviors. Structural and morphology characterizations revealed that Cu doping improved the crystallization of the thin films as compared to undoped CoFe2O4. Current–voltage characterization showed that all CuxCo1−xFe2O4 thin films showed unipolar resistance switching, but the distribution range of the set voltage, reset voltage, and resistances were much reduced by Cu doping. Clear improvement in the stability of these parameters started to appear with x = 0.4, and the optimized performance was observed in the Pt/Cu0.6Co0.4Fe2O4/Pt structure. The improved stability of the switching parameters was attributed to the enhancement of hopping process between the Fe ions and the Cu ions in the spinel lattice. Our results indicated that appropriate adjustment of the doping elements in oxides can be a feasible approach in achieving stable resistance switching memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  2. S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.W. Kim, C.U. Jung, S. Seo, M.J. Lee, T.W. Noh, Adv. Mater. 20, 1154–1159 (2008)

    Article  Google Scholar 

  3. Z.Q. Wang, H.Y. Xu, L. Zhang, X.H. Li, J.G. Ma, X.T. Zhang, Y.C. Liu, Nanoscale 5, 4490–4494 (2013)

    Article  Google Scholar 

  4. C.Y. Liu, J.J. Huang, C.H. Lai, C.H. Lin, Nanoscale Res. Lett. 8, 156 (2013)

    Article  Google Scholar 

  5. F. Kurnia, C. Liu, C.U. Jung, B.W. Lee, Appl. Phys. Lett. 102, 152902 (2013)

    Article  Google Scholar 

  6. M. Mustaqima, P. Yoo, W. Huang, B.W. Lee, C. Liu, Nanoscale Res. Lett. 10, 168 (2015)

    Article  Google Scholar 

  7. Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, M. Liu, Nanotechnology 21, 045202 (2010)

    Article  Google Scholar 

  8. H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042105 (2011)

    Article  Google Scholar 

  9. H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 96, 123502 (2010)

    Article  Google Scholar 

  10. J.M. Luo, S.P. Lin, Y. Zheng, B. Wang, Appl. Phys. Lett. 101, 062902 (2012)

    Article  Google Scholar 

  11. Y.H. Do, J.S. Kwak, J.P. Hong, J. Korean Phys. Soc. 55(3), 1009–1012 (2009)

    Google Scholar 

  12. M. Li, F. Zhuge, X. Zhu, K. Yin, J. Wang, Y. Liu, C. He, B. Chen, R.W. Li, Nanotechnology 21, 425202 (2010)

    Article  Google Scholar 

  13. M.P. Horvath, J. Magn. Magn. Mater. 215–216, 171–183 (2000)

    Article  Google Scholar 

  14. C. Jin, D.X. Zheng, P. Li, W.B. Mi, H.L. Bai, Appl. Surf. Sci. 26, 678–6813 (2012)

    Article  Google Scholar 

  15. W. Hu, L. Zou, R. Chen, W. Xie, X. Chen, N. Qin, S. Li, G. Yang, D. Bao, Appl. Phys. Lett. 104, 143502 (2014)

    Article  Google Scholar 

  16. U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.P. Contour, J.F. Bobo, J. Fontcuberta, A. Fert, Adv. Mater. 18, 1733–1736 (2006)

    Article  Google Scholar 

  17. G. Chen, C. Song, C. Chen, S. Gao, F. Zeng, F. Pan, Adv. Mater. 24, 3515–3520 (2012)

    Article  Google Scholar 

  18. D.M. Jnaneshwara, D.N. Avadhani, B.D. Prasad, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Spectrochim. Acta. A 132, 256–262 (2014)

    Article  Google Scholar 

  19. J.S. Park, J.K. Jeong, H.J. Chung, Y.G. Mo, H.D. Kim, Appl. Phys. Lett. 92, 072104 (2008)

    Article  Google Scholar 

  20. A. Gautam, K. Singh, K. Sen, R.K. Kotnala, M. Singh, Mater. Lett. 65, 591–594 (2011)

    Article  Google Scholar 

  21. M. Hashim, Alimuddin, S. Kumar, B.H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, J. Alloy. Compd. 518, 11–18 (2012)

    Article  Google Scholar 

  22. V. Kalsani, M. Schmitte, Inorg. Chem. 45, 2061–2067 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2014R1A1A3049826 and 2014R1A2A1A11051245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiahou, Z., Kim, D.H., Xu, H. et al. Cu doping effect on the resistive switching behaviors of CoFe2O4 thin films. J Mater Sci: Mater Electron 27, 2255–2259 (2016). https://doi.org/10.1007/s10854-015-4019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4019-7

Keywords

Navigation