Skip to main content
Log in

Effect of sintering temperature on the dielectric and varistor properties of SnO2–Zn2SnO4 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of sintering temperature from 1350 to 1450 °C on the dielectric and varistor properties of SnO2–Zn2SnO4 composite ceramics has been systematically investigated. With the increasing of sintering temperature, the average grain size increased from about 1 to 5 μm and the breakdown electric field decreased from 117 to 3 V/mm. The relative dielectric constant increased with sintering temperature and it achieved the maximum of 1.2 × 104 (40 Hz, 0 °C) at 1425 °C. With excessive increasing of sintering temperature, the relative dielectric constant decreased and the microstructure of the ceramic bulk became porous. In the spectra of imaginary part of the complex modulus, a peak was exhibited and the peak’s position shifted to high frequency with increasing testing or sintering temperature. The activation energy related to the peak was about 0.4 eV and this value was thought to be associated with the oxygen vacancies. Based on the sintering effect, the mechanism of oxygen vacancies in SnO2–Zn2SnO4 composite ceramics was proposed and accordingly, the varistor and giant permittivity properties are well understood based on the grain boundary barrier model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)

    Article  Google Scholar 

  2. T.R.N. Kutty, S. Philip, Mat. Sci. Eng. B Solid. 33, 58 (1995)

    Article  Google Scholar 

  3. W.B. Su, J.F. Wang, H.C. Chen, W.X. Wang, G.Z. Zhang, C.P. Li, J. Appl. Phys. 92, 4779 (2002)

    Article  Google Scholar 

  4. J.Q. Sun, W.P. Chen, W. Xiang, W.C. You, Y. Zhuang, H.L.W. Chan, Ceram. Int. 33, 1137 (2007)

    Article  Google Scholar 

  5. J. Li, F. Li, Y. Zhuang, L. Jin, L. Wang, X. Wei, Z. Xu, S. Zhang, J. Appl. Phys. 116, 074105 (2014)

    Article  Google Scholar 

  6. S.Y. Chung, I.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)

    Article  Google Scholar 

  7. G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, Chin. Phys. Lett. 22, 750 (2005)

    Article  Google Scholar 

  8. G.Z. Zang, X.F. Wang, L.B. Li, H.F. Guo, Q.D. Chen, J. Electroceram. 31, 134 (2013)

    Article  Google Scholar 

  9. G.Z. Zang, L.B. Li, H.H. Liu, X.F. Wang, Z.G. Gai, J. Alloy. Compd. 580, 611 (2013)

    Article  Google Scholar 

  10. G.Z. Zang, F.Z. Zhou, J.X. Cao, X.F. Wang, Z.W. Wang, L.B. Li, G.R. Li, Curr. Appl. Phys. 14, 1682 (2014)

    Article  Google Scholar 

  11. G.Z. Zang, B.S. Lv, L.B. Li, F. Mei, J. Electroceamic. 30, 228 (2013)

    Article  Google Scholar 

  12. Y.M. Huang, D.P. Shi, Y.H. Li, G.Z. Li, Q.C. Wang, L.J. Liu, L. Fang, J. Mater. Sci.: Mater. Electron. 24, 1994 (2013)

    Google Scholar 

  13. C.W. Nahm, J. Mater. Sci.: Mater. Electron. 1, 118 (2013)

    Google Scholar 

  14. G.H. Chen, J.L. Li, X. Chen, X.L. Kang, C.L. Yuan, J. Mater. Sci.: Mater. Electron. 26, 2389 (2015)

    Google Scholar 

  15. D. Dey, R.C. Bradt, J. Am. Ceram. Soc. 75, 2529 (1992)

    Article  Google Scholar 

  16. Z. Ming, S. Yu, T.C. Sheng, J. Eur. Ceram. Soc. 31, 2331 (2011)

    Article  Google Scholar 

  17. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78, 2160 (1997)

    Article  Google Scholar 

  18. R. Tripathi, A. Kumar, C. Bharti, T.P. Sinha, Curr. Appl. Phys. 10, 676 (2010)

    Article  Google Scholar 

  19. S. Ke, H. Fan, H. Huang, Appl. Phys. Lett. 97, 132905 (2010)

    Article  Google Scholar 

  20. X.T. Zhao, J.Y. Li, X. Li, S.T. Li, Acta Phys. Sin. 61, 153103 (2012)

    Google Scholar 

  21. P.F. Cheng, S.T. Li, L. Zhang, J.Y. Li, Appl. Phys. Lett. 93, 012902 (2008)

    Article  Google Scholar 

  22. J.A. Aguilar-Martínez, M.I. Canul, M.B. Hernández, A.B. Glot, E. Rodríguez, L.G. Ortiz, Ceram. Int. 39, 4407 (2013)

    Article  Google Scholar 

  23. P.R. Emtage, J. Appl. Phys. 48, 4372 (1977)

    Article  Google Scholar 

  24. S.T. Li, H. Wang, C.J. Lin, J.Y. Li, Acta Phys. Sin. 62, 087701 (2013)

    Google Scholar 

  25. G.Z. Zang, H.H. Liu, L.J. Lei, X.F. Wang, L.B. Li, J.X. Cao, G.R. Li, J. Am. Ceram. Soc. 98, 2112 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11504090, 11447008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ben Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HH., Li, LB., Zang, GZ. et al. Effect of sintering temperature on the dielectric and varistor properties of SnO2–Zn2SnO4 composite ceramics. J Mater Sci: Mater Electron 27, 2242–2247 (2016). https://doi.org/10.1007/s10854-015-4017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4017-9

Keywords

Navigation