Skip to main content
Log in

Effect of cobalt doping on structural, dielectric and magnetodielectric properties of Ba0.95Sr0.05TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Paper reports the synthesis of cobalt doped Ba0.95Sr0.05TiO3 (BST0.05) by solid state reaction (SSR) method. The X-ray diffractograms analysis reveals the formation of single phase crystalline structure. Scanning electron microscopy image was also employed to observe surface morphology. The dielectric constant and dielectric loss of BST0.05 are obviously influenced by cobalt addition content. The Curie temperature Tc shifts to lower value with increasing cobalt doping content. The studies on P-E and M-H hysteresis loops are carried out to confirm simultaneous presence of both the ferroelectric and ferromagnetic orders in a cobalt doped BST. It is observed that, the value of saturation magnetisation (Ms) is 0.01535 emu/g at field 4500 G, value of remanent magnetisation (Mr) is 0.0008263 emu/g and value of coeresivity is 640 G measured at room temperature for BSTCo0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.V. Giridharan, R. Jayavel, P. Ramasamy, Structural, ‘morphological and electrical studies on barium strontium titanate thin films prepared by sol-gel technique’. Cryst. Res. Technol. 36, 65–72 (2001)

    Article  Google Scholar 

  2. S. Saha, S.B. Krupanidhi, Dielectric response in pulsed laser ablated (Ba, Sr) TiO3 thin films. J. Appl. Phys. 87, 849–854 (2000)

    Article  Google Scholar 

  3. H.T. Su, M.J. Lancaster, F. Huang, F. Wellhofer, Electrically tunable superconducting quasilumped element resonator using thin-film ferroelectrics. Microwave and Optical, Technology Letters 24, 155–158 (2000)

    Article  Google Scholar 

  4. R. Heindl, H. Srikanth, S. Witanachchi, P. Mukherjee, A. Heim, G. Matthews, S. Balachandran, S. Natarajan, T. Weller, Multifunctional ferrimagnetic-ferroelectric thin films for microwave applications. Appl. Phys. Lett. 90, 252507 (2007)

    Article  Google Scholar 

  5. H. Ihrig, J. Phys. C11, 819 (1978)

    Google Scholar 

  6. H.J. Hagenmann, H. Ihrig, Phys. Rev. B 20, 3871 (1979)

    Article  Google Scholar 

  7. O. Willander, M. Nur, Q. Israr, A.B.A. Hamad, F.G. El Desouky, M.A. Salem, Determination of A.C. conductivity of nano-composite perovskite Ba(1–x–y) Sr(x)TiFe(y)O3 prepared by the sol- gel technique. M. J. Crystal. Process Technol. 2, 1–11 (2012)

  8. K. Battisha, A.B.A. Hamad, R.M. Mahani, Structure and dielectric studies of nano- composite Fe2O3: BaTiO3 prepared by sol-gel method. Phys. B 404(16), 2274–2279 (2009)

    Article  Google Scholar 

  9. C.A.F. Vaz, J. Hoffman, C.H. Anh, R. Ramesh, Adv. Mater. 22, 2900–2918 (2010)

    Article  Google Scholar 

  10. T. Chakraborty, S. Ray, M. Itoh, Defect-induced magnetism: test of dilute magnetism in Fe-doped hexagonal BaTiO3 single crystals. Phys Rev B 83, 144407 (2011)

    Article  Google Scholar 

  11. C.H. Wang, S.L. Yuan, S.Y. Yin, Z.M. Tian, P. Li, Multiferroic properties in Ba0.93 Bi0.07Ti1 − xMnxO3 ceramics. J. Appl. Phys. 107, 093902 (2010)

    Article  Google Scholar 

  12. Y.H. Lin, S.Y. Zhang, C.Y. Deng, Y. Zhang, X.H. Wang, C.W. Nan, Enhancement in magnetoelectric response in CoFe2O4–BaTiO3 heterostructure. Appl. Phys. Lett. 92, 112501 (2008)

    Article  Google Scholar 

  13. S.G. Dhumal, S.G. Chavan, Y.D. Kolekar, P.B. Joshi, D.J. Salunkhe, Investigations on Fe doped Ba0.95Sr0.05TiO3 single phase magnetodielectric compounds. J. Mater. Sci.: Mater. Electron. 26, 1466–1473 (2015)

    Google Scholar 

  14. A. Prinz, Magnetoelectronics. Science 282, 1660–1663 (1998)

    Article  Google Scholar 

  15. I. Zutić, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Modern Phys. 76, 323–410 (2004)

  16. V.R. Palkar, S.K. Malik, Observation of magnetoelectric behaviour at room temperature in Pb(FexTi1−x)O3. Solid State Commun. 134(11), 783–786 (2005)

  17. K.C. Verma, M. Ram, R.K. Kotnala, S.S. Bhatt, N.S. Negi, Multiferroic Pb1−xSrx(Fe0.01Ti0.988)O3 nanoparticles: room temperature dielectric relaxation, ferroelectricity and ferromagnetism. Indian J. Pure Appl. Phys. 48, 593–599 (2010)

    Google Scholar 

  18. M.M. Sutar, A.N. Tarale, S.R. Jigajeni, S.B. Kulkarni, V.R. Reddy, P.B. Joshi, Magnetoelectric and Magnetodielectric effect in Ba(1−x)Sr(x)TiO3 and Co0.9Ni0.1Fe(2−x)Mn(x)O4 composites’. Solid State Sci. 14, 1064–1070 (2012)

    Article  Google Scholar 

  19. T. Bonaedy, K.M. Song, K.D. Sang, Solid State Commun. 148, 424 (2008)

    Article  Google Scholar 

  20. A. Ianculescu, D. Berger, L. Mitoşeriu, C.E. Ciomaga, G. Voicu, N. Dragan, D. Crişan, E. Vasile, Ferroelectrics 22, 369 (2008)

    Google Scholar 

  21. J.S. Kim, S.Y. Cho, M.S. Jang, Ferroelectric and relax or behaviour of Fe-doped Sr0.5Ba0.5Nb2−xFexO6 ceramics with a tungsten-bronze structure. J. Korean Phys. Soc. 51(2), 692–696 (2007)

    Article  Google Scholar 

  22. B. Kumari, P.R. Mandal, T.K. Nath, Magnetic, magnetocapacitance and dielectric properties of BiFeO3 nanoceramics. Adv. Mat. Lett. 5(2), 84–88 (2014)

    Google Scholar 

Download references

Acknowledgments

All authors are thankful to DRDO-NRB, New Delhi, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Salunkhe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhumal, S.G., Kulkarni, S.B., Jayasingh, M.E. et al. Effect of cobalt doping on structural, dielectric and magnetodielectric properties of Ba0.95Sr0.05TiO3 ceramics. J Mater Sci: Mater Electron 27, 1421–1426 (2016). https://doi.org/10.1007/s10854-015-3906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3906-2

Keywords

Navigation