PEDOT:PSS as back contact for CdTe solar cells and the effect of PEDOT:PSS conductivity on device performance

  • Weining Wang
  • Naba Raj Paudel
  • Yanfa Yan
  • Fernanda Duarte
  • Michael Mount


Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was studied as the back contact of Cadmium telluride (CdTe) solar cells and was compared with conventional Cu-based back contact. A series of PEDOT:PSS aqueous solutions with different conductivities were spin coated onto the glass/SnO2:F/SnO2/CdS/CdTe structures as back contact, and the PEDOT:PSS conductivity dependence of device performance was studied. It was found that PEDOT:PSS back contact with higher conductivity produces devices with lower series resistance and higher shunt resistance, leading to higher fill factor and higher device efficiencies. As the conductivity of PEDOT:PSS increased from 0.03 to 0.24 S/cm, the efficiency of the solar cell increased from 2.7 to 5.1 %. Methanol cleaning also played an important role in increasing the device performance. The efficiency of our best device with PEDOT:PSS back contact has reached 9.1 %, approaching those with conventional Cu/Au back contact (12.5 %).


Solar Cell Schottky Barrier Back Contact PEDOT Film High Work Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the financial support of Cottrell College Science Award (ID No. 22656) from the Research Corporation for Science Advancement, DOE SunShot Program, New Jersey Space Grant Consortium, and SHU-URC award.


  1. 1.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 23, 1–9 (2015)CrossRefGoogle Scholar
  2. 2.
    Z. Fang, X.C. Wang, H.C. Wu, C.Z. Zhao, Int. J. Photoenergy (2011). doi: 10.1155/2011/297350 Google Scholar
  3. 3.
    J. Britt, C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993)CrossRefGoogle Scholar
  4. 4.
    P. Nollet, M. Burgelman, S. Degrave, Thin Solid Films 361–362, 293–297 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Niemegeers, M. Burgelman, J. Appl. Phys. 81, 2881–2886 (1997)CrossRefGoogle Scholar
  6. 6.
    J. Sites, J. Pan, Thin Solid Films 515, 6099–6102 (2007)CrossRefGoogle Scholar
  7. 7.
    K.C. Park, E.S. Cha, B.T. Ahn, Curr. Appl. Phys. 11, S109–S112 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Wu, J. Zhou, A. Duda, Y. Yan, G. Teeter, S. Asher, W.K. Metzger, S. Demtsu, S.H. Wei, R. Noufi, Thin Solid Films 515, 5798 (2007)CrossRefGoogle Scholar
  9. 9.
    J. Han, C. Fan, C. Spanheimer et al., Appl. Surf. Sci. 256, 5803–5806 (2010)CrossRefGoogle Scholar
  10. 10.
    Hao Lin, Wei Xia, Hsiang N. Wu, Ching W. Tang, Appl. Phys. Lett. 97, 123504 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Prog. Cryst. Growth Charact. 52, 247–279 (2006)CrossRefGoogle Scholar
  12. 12.
    N. Romeo, A. Bosio, A. Romeo, Sol. Energy Mater. Sol. Cells 94, 2–7 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Li, D.R. Diercks, T.R. Ohno, C.W. Warren, M.C. Lonergan, J.D. Beach, C.A. Wolden, Sol. Energy Mater. Sol. Cells 133, 208–215 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Wang, E.A. Schiff, Appl. Phys. Lett. 91, 133504 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Wright, A. Uddin, Sol. Energy Mater. Sol. Cells 107, 87–111 (2012)CrossRefGoogle Scholar
  16. 16.
    J.M.G. Laranjeira, H.J. Khoury, W.M. de Azevedo, E.F. da Silva Jr, E.A. de Vasconcelos, Appl. Surf. Sci. 190, 390 (2002)CrossRefGoogle Scholar
  17. 17.
    S.S. Joshi, T.P. Gujar, V.R. Shinder, C.D. Lokhande, Sens. Actuators B Chem. 132, 349–355 (2008)CrossRefGoogle Scholar
  18. 18.
    Nikolai P. Gaponik, Dmitri V. Talapin, Andrey L. Rogach, Phys. Chem. Chem. Phys. 1, 1787–1789 (1999)CrossRefGoogle Scholar
  19. 19.
    N. Koch, A. Kahn, J. Ghijsen, J.-J. Pireaux, J. Scwartz, R.L. Johnson, A. Elschner, Appl. Phys. Lett. 82, 70 (2003)CrossRefGoogle Scholar
  20. 20.
    A.J. Makinen, I.G. Hill, R. Shashindhar, N. Nikolov, Z.H. Kafafi, Appl. Phys. Lett. 79, 557 (2001)CrossRefGoogle Scholar
  21. 21.
    B. Friedel, P.E. Keivanidis, T.J.K. Brenner, A. Abrusci, ChR McNeill, R.H. Friend, N.C. Greenham, Macromolecules 42, 6741 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Ouyang, Q. Xu, Ch-W Chu, Y. Yang, G. Li, J. Shinar, Polymer 45, 8443 (2004)CrossRefGoogle Scholar
  23. 23.
    Javan H. Cook, Hameed A. Al-Attar, Andy P. Monkman, Org. Electron. 15, 245–250 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Jarkov, S. Bereznev, K. Laes, O. Volobujeva, R. Traksmaa, A. Opik, E. Mellikov, Thin Solid Films 519, 7449–7452 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Jarkov, S. Bereznev, O. Volobujeva, R. Traksmaa, A. Tverjanovich, A. Opik, E. Mellikov, Thin Solid Films 535, 198–201 (2013)CrossRefGoogle Scholar
  26. 26.
    Naba R. Paudel, Corey R. Grice, Chuanxiao Xiao, Yanfa Yan, J. Mater. Sci. Mater. Electron. 26, 4708–4715 (2015)CrossRefGoogle Scholar
  27. 27.
    J.L. Pena, O. Ares, V. Rejon, A. Rios-Flores, J.M. Camacho, N. Romeo, A. Bosio, Thin Solid Films 520, 680–683 (2011)CrossRefGoogle Scholar
  28. 28.
    D. Bagchi, R. Menon, Chem. Phys. Lett. 425, 114 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Yamashita, Ch. Otani, M. Shimizu, H. Okuzaki, Appl. Phys. Lett. 99, 143307 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Kotina, L.M. Tukhkonen, G.V. Patsekina, A.V. Shchukarev, G.M. Gusinskii, Semicond. Sci. Technol. 13, 890 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Weining Wang
    • 1
  • Naba Raj Paudel
    • 2
  • Yanfa Yan
    • 2
  • Fernanda Duarte
    • 1
  • Michael Mount
    • 1
  1. 1.Department of PhysicsSeton Hall UniversitySouth OrangeUSA
  2. 2.Department of Physics and AstronomyUniversity of ToledoToledoUSA

Personalised recommendations