Advertisement

Multi-layered architecture of electrodes containing uniform TiO2 aggregates layers for improving the light scattering efficiency of dye-sensitized solar cells

  • A. M. BakhshayeshEmail author
  • S. S. Azadfar
  • N. Bakhshayesh
Article

Abstract

This study comes up with a new architecture of multi-layered photoanode electrodes containing two thick layers (i.e., 6 µm) of nanocrystalline TiO2 particles and two thin layers (i.e., 1 µm) of uniform TiO2 aggregates, which are alternately deposited. The aggregates layers are deposited by a straightforward gel process, developed for the preparation of uniform and sponge-like light scattering layer for dye-sensitized solar cells (DSSCs) applications. The aggregates layers are composed of uniform spherical particles with average diameter of 2 µm, containing small nanoparticles with the average grain size of 20 nm. The nanocrystalline layers contain 20-nm-diameter TiO2 nanoparticles. X-ray diffraction reveals that the nanocrystalline layers have a pure anatase phase, whereas the aggregates layers show a mixture of anatase and rutile phases. Diffuse reflectance spectroscopy demonstrates that the multi-layered electrode enjoys better light scattering ability than that of mono-layered electrode due to the incorporation of a thin light scattering layer into the nanocrystalline film. The multi-layered DSSC shows the highest power conversion efficiency of 7.69 % as a result of higher light harvesting and less recombination which is demonstrated by electrochemical impedance spectroscopy. From IPCE measurement, the external quantum efficiency of the multi-layered cell is equal 88 %, which is higher than that of mono-layered cell (i.e., 78 %).

Keywords

TiO2 TiO2 Nanoparticles TiO2 Film Rutile Phase External Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Iran Nanotechnology Initiative Council is gratefully acknowledged for partially supporting this research.

References

  1. 1.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 80, 3157 (1997)CrossRefGoogle Scholar
  3. 3.
    A.M. Bakhshayesh, M.R. Mohammadi, Ceram. Int. 39, 7343 (2013)CrossRefGoogle Scholar
  4. 4.
    J.L. Xu, K. Li, W.Y. Shi, T.Y. Peng, J. Power Sources 260, 233 (2014)CrossRefGoogle Scholar
  5. 5.
    M.R. Mohammadi, A.M. Bakhshayesh, F. Sadri, M. Masroor, J. Sol-Gel. Sci. Technol. 67, 77 (2013)CrossRefGoogle Scholar
  6. 6.
    D.H. Chen, F.Z. Huang, Y.-B. Cheng, R.A. Caruso, Adv. Mater. 21, 2206 (2009)CrossRefGoogle Scholar
  7. 7.
    A.M. Bakhshayesh, M.R. Mohammadi, D.J. Fray, Electrochim. Acta 78, 384 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Usami, Chem. Phys. Lett. 277, 105 (1997)CrossRefGoogle Scholar
  9. 9.
    Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev. 248, 1381 (2004)CrossRefGoogle Scholar
  10. 10.
    J. Yu, Q. Li, Z. Shu, Electrochim. Acta 56, 6293 (2011)CrossRefGoogle Scholar
  11. 11.
    L. Zhu, Y.L. Zhao, X.P. Lin, X.Q. Gu, Y.H. Qiang, Superlattice Microstruct. 65, 152 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Sun, X. Zhou, Y. Xu, P. Sun, N. Huang, Y. Sun, Appl. Surf. Sci. 337, 188 (2015)CrossRefGoogle Scholar
  13. 13.
    Z. Sun, J.H. Kim, Y. Zhao, D. Attard, S.X. Dou, Chem. Commun. 49, 966 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Zhao, J. Li, Y. Shi, S. Wang, J. Hub, B. Dong, H. Lu, P. Wang, J. Alloy. Compd. 575, 168 (2013)CrossRefGoogle Scholar
  15. 15.
    A.M. Bakhshayesh, M.R. Mohammadi, Electrochim. Acta 89, 90 (2013)CrossRefGoogle Scholar
  16. 16.
    A.M. Bakhshayesh, N. Farajisafiloo, Mater. Sci. Semicond. Process. 32, 90 (2015)CrossRefGoogle Scholar
  17. 17.
    A.M. Bakhshayesh, N. Farajisafiloo, Appl. Surf. Sci. 331, 58 (2015)CrossRefGoogle Scholar
  18. 18.
    A.M. Bakhshayesh, N. Farajisafiloo, J. Mater. Sci.: Mater. Electron. 26, 3409 (2015)Google Scholar
  19. 19.
    G. Veerappan, D.W. Jung, J. Kwon, J.M. Choi, N. Heo, G.R. Yi, J.H. Park, Langmuir 30, 3010 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Ito, P. Liska, P. Pechy, U. Bach, M.K. Nazeeruddin, A. Kay, S.M. Zekeeruddin, M. Grätzel, Chem. Commun. 34, 4351 (2005)CrossRefGoogle Scholar
  21. 21.
    N.C. Jeong, O.K. Farha, J.T. Hupp, Langmuir 27, 1996 (2011)CrossRefGoogle Scholar
  22. 22.
    R.A. Spurr, H. Myers, Anal. Chem. 29, 760 (1957)CrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, London, 1978), pp. 99–101Google Scholar
  24. 24.
    L. Yang, Y. Lin, J. Jia, X. Xiao, X. Li, X. Zhou, J. Power Sources 182, 370 (2008)CrossRefGoogle Scholar
  25. 25.
    C. Feigenbrugel, S.L. Loew, P. Calvé, J. Mirabel, J. Photochem. Photobiol., A 174, 76 (2005)CrossRefGoogle Scholar
  26. 26.
    L. Chen, M.E. Graham, G. Li, K.A. Gray, Thin Solid Films 515, 1176 (2006)CrossRefGoogle Scholar
  27. 27.
    G. Li, L. Chen, M.E. Graham, K.A. Gray, J. Mol. Catal. A: Chem. 275, 30 (2007)CrossRefGoogle Scholar
  28. 28.
    D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003)CrossRefGoogle Scholar
  29. 29.
    G. Li, C.P. Richter, R.L. Milot, L. Cai, C.A. Schmuttenmaer, R.H. Crabtree, G.W. Brudvig, V.S. Batista, Dalton Trans. 45, 10078 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Abdi-Jalebi, M.R. Mohammadi, D.J. Fray, J. Clust. Sci. 25, 1029 (2014)CrossRefGoogle Scholar
  31. 31.
    C. Longo, J. Freitas, M.A. De Paoli, J. Photochem. Photobiol., A 159, 33 (2003)CrossRefGoogle Scholar
  32. 32.
    Y.P. Lin, S.Y. Lin, Y.C. Lee, Y.W. Chen-Yang, J. Mater. Chem. A 1, 9875 (2013)CrossRefGoogle Scholar
  33. 33.
    G. Schlichthorl, S.Y. Huang, J. Sprague, A.J. Frank, J. Phys. Chem. B 101, 8141 (1997)CrossRefGoogle Scholar
  34. 34.
    L.W. Zhang, H.B. Fu, Y.F. Zhu, Adv. Funct. Mater. 18, 2180 (2008)CrossRefGoogle Scholar
  35. 35.
    A.A.B.F. Martinson, M.S. Goes, F. Fabregat-Santiago, J. Bisquert, M.J. Pellin, J.T. Hupp, J. Phys. Chem. A 113, 4015 (2009)CrossRefGoogle Scholar
  36. 36.
    F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Gratzel, J. Phys. Chem. C 111, 6550 (2007)CrossRefGoogle Scholar
  37. 37.
    C.H. Tsai, C.W. Chang, Y.T. Tsai, C.Y. Lu, M.C. Chen, T.W. Huang, C.C. Wu, Org. Electron. 14, 2866 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. M. Bakhshayesh
    • 1
    Email author
  • S. S. Azadfar
    • 1
  • N. Bakhshayesh
    • 1
  1. 1.Department of Research and DevelopmentSUN Nanotechnologists CompanyTehranIran

Personalised recommendations