Advertisement

Electronic transport in molybdenum dioxide thin films

  • Kale W. Harrison
  • Caleb D. Corolewski
  • Matthew D. McCluskey
  • Jeffrey Lindemuth
  • Su Ha
  • M. Grant NortonEmail author
Article

Abstract

Molybdenum dioxide (MoO2) is a mixed ionic electronic conductor with potential applications in energy storage and conversion. There is some ambiguity about the nature of the electronic conduction mechanism and its temperature dependence. Conductivity data as a function of temperature were obtained and explained within the framework of the band structure to support the description of MoO2 as a semi-metal. AC Hall effect measurements found low electron mobilities as expected for d band conduction. Collectively the data supported a combined conduction model including residual conductivity, low temperature hopping and impurity band conduction from Mo 4d bands degenerate with the conduction band.

Keywords

MoO2 Mixed Ionic Electronic Conductor Electrostatic Spray Deposition Molybdenum Dioxide Hall Effect Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Support for this work was provided by the Office of Naval Research (N00014-12-1-0830) and the Department of Energy (DE-FG02-07ER46386).

References

  1. 1.
    A. Gulino, S. Parker, F.H. Jones, R.G. Egdell, J. Chem. Soc. Faraday Trans. 92, 2137 (1996)CrossRefGoogle Scholar
  2. 2.
    C.B. Carter, M.G. Norton, Ceramic Materials: Science and Engineering, 2nd edn. (Springer, New York, 2013), pp. 550–552CrossRefGoogle Scholar
  3. 3.
    C.A. Ellefson, O. Marin-Flores, S. Ha, M.G. Norton, J. Mater. Sci. 47, 2057 (2012)CrossRefGoogle Scholar
  4. 4.
    Q. Yang, Q. Liang, J. Liu, S. Liang, S. Tang, P. Lu et al., Mater. Lett. 127, 32 (2014)CrossRefGoogle Scholar
  5. 5.
    B.W. Kwon, C.A. Ellefson, J. Breit, J. Kim, M.G. Norton, S. Ha, J. Power Sources 243, 203 (2013)CrossRefGoogle Scholar
  6. 6.
    X. Hou, O. Marin-Flores, B.W. Kwon, J. Kim, M.G. Norton, S. Ha, J. Power Sources 268, 546 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Han, W. Ma, S. Pang, Q. Kong, J. Yao, C. Bi et al., J. Mater. Chem. A 1, 5949 (2013)CrossRefGoogle Scholar
  8. 8.
    O. Marin-Flores, T. Turba, C.A. Ellefson, L. Scudiero, J. Breit, M.G. Norton et al., J. Nanoelectron. Opt. 5, 110 (2010)CrossRefGoogle Scholar
  9. 9.
    D.B. Rogers, R.D. Shannon, A.W. Sleight, J.L. Gillson, Inorg. Chem. 8, 841 (1969)CrossRefGoogle Scholar
  10. 10.
    Y.F. Shi, B.K. Guo, S.A. Corr, Q.H. Shi, Y.S. Hu, K.R. Heier et al., Nano Lett. 9, 4215 (2009)CrossRefGoogle Scholar
  11. 11.
    M.S. Oh, B.S. Yang, J.H. Lee, S.H. Oh, U.S. Lee, Y.J. Kim et al., J. Vac. Sci. Technol. A 30, 031501-1 (2012)Google Scholar
  12. 12.
    M.A. Khilla, Z.M. Hanafi, B.S. Farag, A. Abuelsaud, Thermochim. Acta 54, 35 (1982)CrossRefGoogle Scholar
  13. 13.
    G.B. Smith, D. Golestan, A.R. Gentle, Appl. Phys. Lett. 103, 051119-1 (2013)Google Scholar
  14. 14.
    X.Y. Chen, Z.J. Zhang, X.X. Li, C.W. Shi, X.L. Li, Chem. Phys. Lett. 418, 105 (2006)CrossRefGoogle Scholar
  15. 15.
    V. Eyert, R. Horny, K.H. Hock, S. Horn, J. Phys. Condens. Matter 12, 4923 (2000)CrossRefGoogle Scholar
  16. 16.
    D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, J. Phys. Chem. C 114, 4636 (2010)CrossRefGoogle Scholar
  17. 17.
    R. Hoffman, Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures (VCH Publishers Inc, New York, 1988)Google Scholar
  18. 18.
    A. Walsh, A.B. Kehoe, D.J. Temple, G.W. Watson, D.O. Scanlon, Chem. Commun. 49, 448 (2013)CrossRefGoogle Scholar
  19. 19.
    M.D. McCluskey, E.E. Haller, Dopants and Defects in Semiconductors (CRC Press, Boca Raton, 2012), pp. 125–129Google Scholar
  20. 20.
    A.J.E. Rettie, H.C. Lee, L.G. Marshall, J.F. Lin, C. Capan, J. Lindemuth et al., J. Am. Chem. Soc. 135, 11389 (2013)CrossRefGoogle Scholar
  21. 21.
    A.L. Efros, B.I. Shklovskii, J. Phys. C Solid State 8, L49 (1975)CrossRefGoogle Scholar
  22. 22.
    A.R. Bally, E.N. Korobeinikova, P.E. Schmid, F. Levy, F. Bussy, J. Phys. D Appl. Phys. 31, 1149 (1998)CrossRefGoogle Scholar
  23. 23.
    J. Hubbard, Proc. R. Soc. Lond. Ser. A 281, 401 (1964)CrossRefGoogle Scholar
  24. 24.
    O. Marin-Flores, L. Scudiero, S. Ha, Surf. Sci. 603, 2327 (2009)CrossRefGoogle Scholar
  25. 25.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kale W. Harrison
    • 1
  • Caleb D. Corolewski
    • 2
  • Matthew D. McCluskey
    • 2
  • Jeffrey Lindemuth
    • 3
  • Su Ha
    • 4
  • M. Grant Norton
    • 1
    Email author
  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Department of Physics and AstronomyWashington State UniversityPullmanUSA
  3. 3.Lake Shore CryotronicsWestervilleUSA
  4. 4.Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA

Personalised recommendations