Skip to main content

Advertisement

Log in

Tuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

By varying the density of solution-processed lithium fluoride (sol-LiF) nanoparticles at the interface between tin-doped indium oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), we have demonstrated that the electronic hole collection efficiency of an organic photovoltaic cell can be optimized through tuning the energy level alignment at the ITO/PEDOT:PSS interface. We synthesized the LiF nanoparticles in solution and deposited them onto ITO electrodes with increasing surface coverage up to 13.2 %. The surface work function of the nanostructured ITO increased linearly from 4.88 to 5.30 eV. When the sol-LiF-modified ITO electrodes were incorporated into polymer solar cells based on a bulk heterojunction of poly(3-hexylthiophene) polymer and methanofullerene, a maximum power conversion efficiency was recorded for a device with an ITO anode modified by 5.3 % of sol-LiF coverage, which corresponded to a measured work function of 5.07 eV. The improvement in short circuit current density by 87 % and power conversion efficiency by 74.3 % suggest that the sol-LiF interlayer density enabled work function tuning of the ITO anode to better match the highest occupied molecular orbital level of PEDOT:PSS, facilitating hole charge collection. The increase in electronic hole collection efficiency is attributed to both a lowered resistance at the ITO modified by sol-LiF and faster hole transport, although these gains are offset by an associated increase in contact polarization. Our findings suggest that the surface work function of ITO can be tuned to improve energy level alignment with other contact layers via the surface density of sol-LiF particles. More efficient hole transport, due to higher recombination resistance, offset by an increased charge extraction barrier presented by contact polarization; the two effects combined give rise to an optimum in sol-LiF nanostructuring of the ITO surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Kippelen, J.-L. Brédas, Energy Environ. Sci. 2, 251 (2009)

    Article  Google Scholar 

  2. F.C. Krebs, T. Tromholt, M. Jørgensen, Nanoscale 2, 873 (2010)

    Article  Google Scholar 

  3. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 20, 12 (2012)

    Article  Google Scholar 

  4. R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Mater. Today 15, 36 (2012)

    Article  Google Scholar 

  5. H. Ma, H.-L. Yip, F. Huang, A.K.-Y. Jen, Adv. Funct. Mater. 20, 1371 (2010)

    Article  Google Scholar 

  6. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005)

    Article  Google Scholar 

  7. E. Ratcliff, B. Zacher, N. Armstrong, J. Phys. Chem. Lett. 2, 1337 (2011)

    Article  Google Scholar 

  8. J.S. Kim, J.H. Park, J.H. Lee, J. Jo, D.-Y. Kim, K. Cho, Appl. Phys. Lett. 91, 112111 (2007)

    Article  Google Scholar 

  9. M. Gliboff, H. Li, K.M. Knesting, A.J. Giordano, D. Nordlund, G.T. Seidler, J.-L. Brédas, S.R. Marder, D.S. Ginger, J. Phys. Chem. C 117, 15139 (2013)

    Article  Google Scholar 

  10. M. Gliboff, L. Sang, K.M. Knesting, M.C. Schalnat, A. Mudalige, E.L. Ratcliff, H. Li, A.K. Sigdel, A.J. Giordano, J.J. Berry, D. Nordlund, G.T. Seidler, J.-L. Brédas, S.R. Marder, J.E. Pemberton, D.S. Ginger, Langmuir 29, 2166 (2013)

    Article  Google Scholar 

  11. M.G. Helander, Z.B. Wang, J. Qiu, M.T. Greiner, D.P. Puzzo, Z.W. Liu, Z.H. Lu, Science 332, 944 (2011)

    Article  Google Scholar 

  12. C.-Y. Li, T.-C. Wen, T.-F. Guo, J. Mater. Chem. 18, 4478 (2008)

    Article  Google Scholar 

  13. B. Kang, L.W. Tan, S.R.P. Silva, Appl. Phys. Lett. 93, 133302 (2008)

    Article  Google Scholar 

  14. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S.R. Marder, A. Kahn, B. Kippelen, Science 336, 327 (2012)

    Article  Google Scholar 

  15. I.P. Murray, S.J. Lou, L.J. Cote, S. Loser, C.J. Kadleck, T. Xu, J.M. Szarko, B.S. Rolczynski, J.E. Johns, J. Huang, L. Yu, L.X. Chen, T.J. Marks, M.C. Hersam, J. Phys. Chem. Lett. 2, 3006 (2011)

    Article  Google Scholar 

  16. S. Chaudhary, H. Lu, A.M. Müller, C.J. Bardeen, M. Ozkan, Nano Lett. 7, 1973 (2007)

    Article  Google Scholar 

  17. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)

    Article  Google Scholar 

  18. M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, Proc. Natl. Acad. Sci. 105, 2783 (2008)

    Article  Google Scholar 

  19. K.X. Steirer, P.F. Ndione, N.E. Widjonarko, M.T. Lloyd, J. Meyer, E.L. Ratcliff, A. Kahn, N.R. Armstrong, C.J. Curtis, D.S. Ginley, J.J. Berry, D.C. Olson, Adv. Energy Mater. 1, 813 (2011)

    Article  Google Scholar 

  20. W.-J. Yoon, P.R. Berger, Appl. Phys. Lett. 92, 013306 (2008)

    Article  Google Scholar 

  21. H.-L. Yip, S.K. Hau, N.S. Baek, A.K.-Y. Jen, Appl. Phys. Lett. 92, 193313 (2008)

    Article  Google Scholar 

  22. A. Turak, RSC Adv. 3, 6188 (2013)

    Article  Google Scholar 

  23. L.S.C. Pingree, B.A. MacLeod, D.S. Ginger, J. Phys. Chem. C 112, 7922 (2008)

    Article  Google Scholar 

  24. H. Yan, P. Lee, N.R. Armstrong, A. Graham, G.A. Evmenenko, P. Dutta, T.J. Marks, J. Am. Chem. Soc. 127, 3172 (2005)

    Article  Google Scholar 

  25. K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, H.F. Chow, Z.Q. Gao, W.L. Yeung, C.C. Chang, Appl. Phys. Lett. 80, 2788 (2002)

    Article  Google Scholar 

  26. G. Garcia-Belmonte, A. Guerrero, J. Bisquert, J. Phys. Chem. Lett. 4, 877 (2013)

    Article  Google Scholar 

  27. G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 9, 847 (2008)

    Article  Google Scholar 

  28. T. Aytun, A. Turak, I. Baikie, G. Halek, C.W. Ow-Yang, Nano Lett. 12, 39 (2012)

    Article  Google Scholar 

  29. A. Turak, T. Aytun, C.W. Ow-Yang, Appl. Phys. Lett. 100, 253303 (2012)

    Article  Google Scholar 

  30. C.W. Ow-Yang, J. Jia, T. Aytun, M. Zamboni, A. Turak, K. Saritas, Y. Shigesato, Thin Solid Films 559, 58 (2014)

    Article  Google Scholar 

  31. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)

    Article  Google Scholar 

  32. A.S. Bondarenko, G.A. Ragoisha, in Progress in Chemometrics Research, ed. by A.L. Pomerantsev (Nova Science Publishers, New York, 2005), p. 89

  33. S. Suckow, T.M. Pletzer, H. Kurz, Prog. Photovolt. Res. Appl. 22, 494 (2014)

    Article  Google Scholar 

  34. E.L. Ratcliff, J. Meyer, K.X. Steirer, N.R. Armstrong, D. Olson, A. Kahn, Org. Electron. 13, 744 (2012)

    Article  Google Scholar 

  35. O. Bubnova, Z.U. Khan, H. Wang, S. Braun, D.R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y.H. Geerts, S. Desbief, D.W. Breiby, J.W. Andreasen, R. Lazzaroni, W.M. Chen, I. Zozoulenko, M. Fahlman, P.J. Murphy, M. Berggren, X. Crispin, Nat. Mater. 13, 190 (2014)

    Article  Google Scholar 

  36. T. Aernouts, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, Thin Solid Films 403–404, 297 (2002)

    Article  Google Scholar 

  37. C. Waldauf, M.C. Scharber, P. Schilinsky, J.A. Hauch, C.J. Brabec, J. Appl. Phys. 99, 104503 (2006)

    Article  Google Scholar 

  38. T. Strobel, C. Deibel, V. Dyakonov, Phys. Rev. Lett. 105, 266602 (2010)

    Article  Google Scholar 

  39. A. Wagenpfahl, C. Deibel, V. Dyakonov, IEEE J. Sel. Top. Quantum Electron. 16, 1759 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support is acknowledged from the Scientific and Technological Research Council of Turkey (TUBITAK) for Project No. 112M360, also from H. K. for a BIDEB fellowship. The authors are grateful to Prof. Ayse Turak for fruitful discussions and to GUNAM at Middle East Technical University for use of their solar simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleva W. Ow-Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 5905 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, H., Jia, J., Shigesato, Y. et al. Tuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles. J Mater Sci: Mater Electron 26, 9205–9212 (2015). https://doi.org/10.1007/s10854-015-3613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3613-z

Keywords

Navigation