Skip to main content

Improved magnetism in Cr doped ZnS nanoparticles with nitrogen co-doping synthesized using chemical co-precipitation technique

Abstract

2 % Cr doped ZnS nanoparticles were synthesized using chemical co-precipitation technique. Powder X-ray diffraction reveals that Cr incorporates into the ZnS crystal lattice without troubling the original cubic structure. Transmission electron microscopy measurements show that the average size of these nanoparticles is in the range 3–4 nm. Room temperature photoluminescence studies show the increase in defects with increase in nitrogen co-doping. 2 % Cr doped ZnS exhibit hysteresis loop at room temperature indicating the magnetic behavior with diamagnetic contribution with increase in applied field. Increase in nitrogen co-doping along with Cr in ZnS shows enhanced ferromagnetism with saturated magnetization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. L. Brus, J. Phys. Chem. 90, 2555–2560 (1986)

    Article  Google Scholar 

  2. A. Sobhani, M. Salavati-Niasari, M. Sobhani, Mater. Sci. Semicond. Process. 16, 410 (2013)

    Article  Google Scholar 

  3. A. Sobhani, M. Salavati-Niasari, Superlattices Microstruct. 59, 1 (2013)

    Article  Google Scholar 

  4. M. Salavati-Niasari, A. Sobhani, F. Davar, J. Alloys Compd. 507, 77 (2010)

    Article  Google Scholar 

  5. D.A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, AIP Conf. Proc. 1391, 588 (2011)

    Article  Google Scholar 

  6. K. Sato, H.K. Yoshida, Semicond. Sci. Technol. 17, 367 (2002)

    Article  Google Scholar 

  7. P.V.B. Lakshmi, K.S. Raj, K. Ramachandran, Cryst. Res. Tech. 44, 153 (2010)

    Article  Google Scholar 

  8. S. Sambasivam, D.P. Joseph, J.G. Lin, C.J. Venkateswaran, Solid State Chem. 182, 2598 (2009)

    Article  Google Scholar 

  9. F.J. Owens, L. Gladczuk, R. Szymczak, P. Dluzewski, A. Wisniewski, H. Szymczak, A. Golnik, Ch. Bernhard, Ch. Niedermayer, J. Phys. Chem. Solids 72, 648 (2011)

    Article  Google Scholar 

  10. S. Sambasivam, D.P. Joseph, D.R. Reddy, B.K. Reddy, C.K. Jayasankar, Mater. Sci. Eng. B 150, 125 (2008)

    Article  Google Scholar 

  11. S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, J. Alloys Comp. 554, 357 (2013)

    Article  Google Scholar 

  12. S. Wageh, S.L. Zhao, X.R. Xu, J. Cryst. Growth 255, 332 (2003)

    Article  Google Scholar 

  13. M. Zigone, M. Vandevyver, D.N. Talwar, Phys. Rev. B 24, 5763 (1981)

    Article  Google Scholar 

  14. J.P. Borah, J. Barman, K.C. Sarma, Chalcogenide Lett. 5, 201 (2008)

    Google Scholar 

  15. Y. Huang, Z. Zhang, F. Ma, P.K. Chu, C. Dong, X. Wei, Comput. Mater. Sci. 101, 1 (2015)

    Article  Google Scholar 

  16. Z. Zhang, J. Li, J. Jian, R. Wu, Y. Sun, S. Wang, Y. Ren, J. Li, J. Cryst. Growth 372, 39 (2013)

    Article  Google Scholar 

  17. X. Zeng, J. Zhang, F. Huang, J. Appl. Phys. 11, 123525 (2012)

    Article  Google Scholar 

  18. D.A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Appl. Phys. A Mater. Sci. Process. 105, 119 (2011)

    Article  Google Scholar 

  19. D.A. Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Solid State Commun. 152, 596 (2012)

    Article  Google Scholar 

  20. P. Kaur, S. Kumar, A. Singh, C.L. Chen, C.L. Dong, T.S. Chan, K.P. Lee, C. Srivastava, S.M. Rao, M.K. Wu, Superlattices Microstruct. 83, 785–795 (2015)

    Article  Google Scholar 

  21. D.A. Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Appl. Surf. Sci. 258, 5206 (2012)

    Article  Google Scholar 

  22. D.A. Reddy, S. Sambasivam, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, Y. Aparna, B.K. Reddy, J.L. Rao, J. Alloys Compd. 537, 208 (2012)

    Article  Google Scholar 

  23. D.A. Reddy, C.L. Liu, R.P. Vijayalakshmi, B.K. Reddy, Ceram. Int. 40, 1279 (2014)

    Article  Google Scholar 

  24. P. Kaur, S. Kumar, N.S. Negi, S.M. Rao, Appl. Nanosci. 5, 367 (2015)

    Article  Google Scholar 

  25. L.B. Duan, X.R. Zhao, J.M. Liu, T. Wang, G.H. Rao, Appl. Phys. A 99, 679 (2010)

    Article  Google Scholar 

  26. C. Bi, L.Q. Pan, M. Xu, L.Q. Qin, J.H. Yin, in 9th IEEE Conference on Nanotechnology (IEEE-NANO), p. 874 (2009)

  27. N.A. Dhas, A. Zaban, A. Gedanken, Chem. Mater. 11, 806 (1999)

    Article  Google Scholar 

  28. K. Sooklal, B.S. Cullum, S.M. Angel, C.J. Murphy, J. Phys. Chem. 100, 4551 (1996)

    Article  Google Scholar 

  29. W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888 (1983)

    Article  Google Scholar 

  30. L.L. Liu, Y. Lin, P. Yunti, X. Dingquan, Z. Jianguo, Mater. Lett. 66, 121 (2012)

    Article  Google Scholar 

  31. N. Murase, R. Jaganathan, Y. Kanematsu, M. Watanabe, A. Kurita, H. Hirata, T. Yazawa, T. Kushida, J. Phys. Chem. B 103, 754 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Kumar, S., Singh, A. et al. Improved magnetism in Cr doped ZnS nanoparticles with nitrogen co-doping synthesized using chemical co-precipitation technique. J Mater Sci: Mater Electron 26, 9158–9163 (2015). https://doi.org/10.1007/s10854-015-3605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3605-z

Keywords

  • Room Temperature Ferromagnetism
  • Sodium Sulphide
  • Chromium Acetate
  • High Resolution Transition Electron Microscope
  • Free Delocalized Carrier