Improved magnetism in Cr doped ZnS nanoparticles with nitrogen co-doping synthesized using chemical co-precipitation technique

  • Palvinder Kaur
  • Sanjeev KumarEmail author
  • Anupinder Singh
  • S. M. Rao


2 % Cr doped ZnS nanoparticles were synthesized using chemical co-precipitation technique. Powder X-ray diffraction reveals that Cr incorporates into the ZnS crystal lattice without troubling the original cubic structure. Transmission electron microscopy measurements show that the average size of these nanoparticles is in the range 3–4 nm. Room temperature photoluminescence studies show the increase in defects with increase in nitrogen co-doping. 2 % Cr doped ZnS exhibit hysteresis loop at room temperature indicating the magnetic behavior with diamagnetic contribution with increase in applied field. Increase in nitrogen co-doping along with Cr in ZnS shows enhanced ferromagnetism with saturated magnetization.


Room Temperature Ferromagnetism Sodium Sulphide Chromium Acetate High Resolution Transition Electron Microscope Free Delocalized Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Brus, J. Phys. Chem. 90, 2555–2560 (1986)CrossRefGoogle Scholar
  2. 2.
    A. Sobhani, M. Salavati-Niasari, M. Sobhani, Mater. Sci. Semicond. Process. 16, 410 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Sobhani, M. Salavati-Niasari, Superlattices Microstruct. 59, 1 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Salavati-Niasari, A. Sobhani, F. Davar, J. Alloys Compd. 507, 77 (2010)CrossRefGoogle Scholar
  5. 5.
    D.A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, AIP Conf. Proc. 1391, 588 (2011)CrossRefGoogle Scholar
  6. 6.
    K. Sato, H.K. Yoshida, Semicond. Sci. Technol. 17, 367 (2002)CrossRefGoogle Scholar
  7. 7.
    P.V.B. Lakshmi, K.S. Raj, K. Ramachandran, Cryst. Res. Tech. 44, 153 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Sambasivam, D.P. Joseph, J.G. Lin, C.J. Venkateswaran, Solid State Chem. 182, 2598 (2009)CrossRefGoogle Scholar
  9. 9.
    F.J. Owens, L. Gladczuk, R. Szymczak, P. Dluzewski, A. Wisniewski, H. Szymczak, A. Golnik, Ch. Bernhard, Ch. Niedermayer, J. Phys. Chem. Solids 72, 648 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Sambasivam, D.P. Joseph, D.R. Reddy, B.K. Reddy, C.K. Jayasankar, Mater. Sci. Eng. B 150, 125 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, J. Alloys Comp. 554, 357 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Wageh, S.L. Zhao, X.R. Xu, J. Cryst. Growth 255, 332 (2003)CrossRefGoogle Scholar
  13. 13.
    M. Zigone, M. Vandevyver, D.N. Talwar, Phys. Rev. B 24, 5763 (1981)CrossRefGoogle Scholar
  14. 14.
    J.P. Borah, J. Barman, K.C. Sarma, Chalcogenide Lett. 5, 201 (2008)Google Scholar
  15. 15.
    Y. Huang, Z. Zhang, F. Ma, P.K. Chu, C. Dong, X. Wei, Comput. Mater. Sci. 101, 1 (2015)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, J. Li, J. Jian, R. Wu, Y. Sun, S. Wang, Y. Ren, J. Li, J. Cryst. Growth 372, 39 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Zeng, J. Zhang, F. Huang, J. Appl. Phys. 11, 123525 (2012)CrossRefGoogle Scholar
  18. 18.
    D.A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Appl. Phys. A Mater. Sci. Process. 105, 119 (2011)CrossRefGoogle Scholar
  19. 19.
    D.A. Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Solid State Commun. 152, 596 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Kaur, S. Kumar, A. Singh, C.L. Chen, C.L. Dong, T.S. Chan, K.P. Lee, C. Srivastava, S.M. Rao, M.K. Wu, Superlattices Microstruct. 83, 785–795 (2015)CrossRefGoogle Scholar
  21. 21.
    D.A. Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Appl. Surf. Sci. 258, 5206 (2012)CrossRefGoogle Scholar
  22. 22.
    D.A. Reddy, S. Sambasivam, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, Y. Aparna, B.K. Reddy, J.L. Rao, J. Alloys Compd. 537, 208 (2012)CrossRefGoogle Scholar
  23. 23.
    D.A. Reddy, C.L. Liu, R.P. Vijayalakshmi, B.K. Reddy, Ceram. Int. 40, 1279 (2014)CrossRefGoogle Scholar
  24. 24.
    P. Kaur, S. Kumar, N.S. Negi, S.M. Rao, Appl. Nanosci. 5, 367 (2015)CrossRefGoogle Scholar
  25. 25.
    L.B. Duan, X.R. Zhao, J.M. Liu, T. Wang, G.H. Rao, Appl. Phys. A 99, 679 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Bi, L.Q. Pan, M. Xu, L.Q. Qin, J.H. Yin, in 9th IEEE Conference on Nanotechnology (IEEE-NANO), p. 874 (2009)Google Scholar
  27. 27.
    N.A. Dhas, A. Zaban, A. Gedanken, Chem. Mater. 11, 806 (1999)CrossRefGoogle Scholar
  28. 28.
    K. Sooklal, B.S. Cullum, S.M. Angel, C.J. Murphy, J. Phys. Chem. 100, 4551 (1996)CrossRefGoogle Scholar
  29. 29.
    W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888 (1983)CrossRefGoogle Scholar
  30. 30.
    L.L. Liu, Y. Lin, P. Yunti, X. Dingquan, Z. Jianguo, Mater. Lett. 66, 121 (2012)CrossRefGoogle Scholar
  31. 31.
    N. Murase, R. Jaganathan, Y. Kanematsu, M. Watanabe, A. Kurita, H. Hirata, T. Yazawa, T. Kushida, J. Phys. Chem. B 103, 754 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Palvinder Kaur
    • 1
  • Sanjeev Kumar
    • 2
    Email author
  • Anupinder Singh
    • 3
  • S. M. Rao
    • 1
    • 4
  1. 1.Department of PhysicsPunjabi UniversityPatialaIndia
  2. 2.Applied Science DepartmentPEC University of TechnologyChandigarhIndia
  3. 3.Department of PhysicsGuru Nanak Dev UniversityAmritsarIndia
  4. 4.Institute of PhysicsAcademia SinicaTaipeiTaiwan

Personalised recommendations