Skip to main content
Log in

Enhanced H2S sensor based on electrospun mesoporous SnO2 nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hollow and filled, well-aligned electrospun SnO2 nanofibers as H2S gas-sensing materials have been controllably synthesized with the adding of PVP and/or PAN, respectively. It seems that the use of sacrificial polymeric precursor (PAN) results in hollow nanofiber while PVP leads to pores in both cases. A comparison study reveals that an absolute enhancement in H2S gas-sensing performance for the sensor made of hollow SnO2 nanofibers occurs over that of the filled counterpart. The improved gas sensing properties are mainly attributed to not only the sufficient diffusion channels for gas spreading but also a significant fraction of the atoms from both the inner and outer walls, as well as granular interfaces, participating in gas-sensing reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.M. Arafat, B. Dinan, S.A. Akbar, A.S. Haseeb, Sensors 12, 7207–7258 (2012)

    Article  Google Scholar 

  2. A. Kolmakov, M. Moskovits, Annu. Rev. Mater. Res. 34, 151–180 (2004)

    Article  Google Scholar 

  3. J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43, 6920–6937 (2014)

    Article  Google Scholar 

  4. B. Weintraub, Z. Zhou, Y. Li, Nanoscale 2, 1573–1587 (2010)

    Article  Google Scholar 

  5. M. Dadkhah, M.S. Niasari, Z. Fereshteh, J. Alloy Compd. 496, 638–643 (2010)

    Article  Google Scholar 

  6. M. Dadkhah, M.S. Niasari, Mater. Sci. Semicond. Process. 20, 41–48 (2014)

    Article  Google Scholar 

  7. M.S. Niasari, N. Mir, F. Davar, Inorg. Chim. Acta 363, 1719–1726 (2010)

    Article  Google Scholar 

  8. Z.J. Wang, Z.Y. Li, T.T. Jiang, X.R. Xu, C. Wang, A.C.S. Appl, Mater. Interfaces 5, 2013–2021 (2013)

    Article  Google Scholar 

  9. X. Xu, J. Sun, H. Zhang, Z. Wang, B. Dong, T. Jiang, Sens. Actuators B 160, 858–863 (2011)

    Article  Google Scholar 

  10. S.W. Choi, A. Katoch, J.H. Kim, S.S. Kim, A.C.S. Appl, Mater. Interfaces 6, 17723–17729 (2014)

    Article  Google Scholar 

  11. S.W. Choi, A. Katoch, G.J. Sun, S.S. Kim, Sens. Actuators B 181, 787–794 (2013)

    Article  Google Scholar 

  12. X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Sens. Actuators B 177, 178–195 (2013)

    Article  Google Scholar 

  13. S.W. Choi, A. Katoch, G.J. Sun, J.H. Kim, S.H. Kim, S.S. Kim, A.C.S. Appl, Mater. Interfaces 6, 8281–8287 (2014)

    Article  Google Scholar 

  14. Y. Cui, Q. Wei, H.K. Park, C.M. Lieber, Science 293, 1289–1292 (2001)

    Article  Google Scholar 

  15. Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, J. Nanomater. 2012, 1–22 (2012)

    Google Scholar 

  16. Z. Wen, L. Zhu, Y. Li, Z. Zhang, Z. Ye, Sens. Actuators B 203, 873–879 (2014)

    Article  Google Scholar 

  17. Z. Wen, L. Zhu, Z. Zhang, Z. Ye, Sens. Actuators B 208, 112–121 (2015)

    Article  Google Scholar 

  18. L. Xu, R. Zheng, S. Song, J. Chen, B. Dong, Inorg. Chem. 51, 7733–7740 (2012)

    Article  Google Scholar 

  19. K.R. Ab, Z. Li, A.Z. Sadek, R.R. Abdul, A.S. Zoolfaka, M.R. Field, J. Phys. Chem. C 118, 3129–3139 (2014)

    Article  Google Scholar 

  20. W.S. Kim, B.S. Lee, D.H. Kim, H.C. Kim, W.R. Yu, S.H. Hong, Nanotechnology 21, 2583–2587 (2010)

    Google Scholar 

  21. Y. Jia, L. He, Z. Guo, X. Chen, F. Meng, T. Luo, J. Phys. Chem. C 113, 9581–9587 (2009)

    Article  Google Scholar 

  22. E.Z. Karimi, J. Esmaeilzadeh, E. Marzbanrad, Bull. Mater. Sci. 38, 209–214 (2015)

    Article  Google Scholar 

  23. J. Cao, T. Zhang, F. Li, H. Yang, S. Liu, New J. Chem. 37, 2031–2036 (2013)

    Article  Google Scholar 

  24. L. Wang, X. Luo, X. Zheng, R. Wang, T. Zhang, RSC Adv. 3, 9723–9728 (2013)

    Article  Google Scholar 

  25. Y. Zheng, J. Wang, P. Chen, C. Li, X. Li, Int. J. Appl. Ceram. Technol. 10, E304–E309 (2013)

    Article  Google Scholar 

  26. N.G. Cho, D.J. Yang, M.J. Jin, H.G. Kim, H.L. Tuller, I.D. Kim, Sens. Actuators B 160, 1468–1472 (2011)

    Article  Google Scholar 

  27. M. Dadkhah, M.S. Niasari, Electrochim. Acta 129, 62–68 (2014)

    Article  Google Scholar 

  28. F. Davar, F. Mohandes, M.S. Niasari, Polyhedron 29, 3132–3136 (2010)

    Article  Google Scholar 

  29. W. Zeng, T.M. Li, T. Li, J. Hao, Y. Li, J. Mater. Sci. Mater. Electron. 26, 1192–1197 (2014)

    Article  Google Scholar 

  30. T.M. Li, W. Zeng, B. Miao, S. Zhao, Y. Li, H. Zhang, Mater. Lett. 144, 106–109 (2015)

    Article  Google Scholar 

  31. M.M. Arani, M.S. Niasari, J. Mater. Sci. Mater. Electron. 26, 2316–2322 (2015)

    Article  Google Scholar 

  32. L. Xu, H. Song, B. Dong, Y. Wang, X. Bai, G. Wang, J. Phys. Chem. C 113, 9609–9615 (2009)

    Article  Google Scholar 

  33. L. Ji, Z. Lin, Y. Li, S. Li, Y. Liang, O. Toprakc, Polymer 51, 4368–4374 (2010)

    Article  Google Scholar 

  34. C. Kim, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, Y.J. Kim, Adv. Mater. 19, 2341–2346 (2007)

    Article  Google Scholar 

  35. P.F. The, Y. Sharma, S.S. Pramana, M. Srinivasan, J. Mater. Chem. 21, 14999–15008 (2011)

    Article  Google Scholar 

  36. F. Mou, J.G. Guan, W. Shi, Z. Sun, S. Wang, Langmuir 26, 15580–15585 (2010)

    Article  Google Scholar 

  37. S. Das, V. Jayaraman, SnO2. Prog. Mater. Sci. 66, 112–255 (2014)

    Article  Google Scholar 

  38. T. Hübert, B.L. Boon, G. Black, U. Banach, Sens. Actuators B 157, 329–352 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningyu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Chen, Z. & Zeng, W. Enhanced H2S sensor based on electrospun mesoporous SnO2 nanotubes. J Mater Sci: Mater Electron 26, 9152–9157 (2015). https://doi.org/10.1007/s10854-015-3604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3604-0

Keywords

Navigation