Skip to main content

Advertisement

Log in

PEDOT:PSS/graphene/PEDOT ternary film for high performance electrochemical electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For effective use of graphene and conducting polymer, a new ternary hybrid film composed of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), graphene, and poly (3,4-ethylenedioxythiophene) (PEDOT) has been designed and fabricated. The ternary PEDOT:PSS/graphene/PEDOT film is prepared via a two-step process: PEDOT:PSS/graphene hybrid film was spin-coated on the substrate in the first step and followed by the vapor phase polymerization (VPP) of PEDOT film on the PEDOT:PSS/graphene film in the second step. Each component in the hybrid film provides unique and crucial function to achieve optimized electrochemical properties. Volumetric capacity of ternary film (155.71 F/cm3) is much higher than that of pure VPP PEDOT film (93.66 F/cm3). The ternary film also exhibits excellent charge/discharge rate and good cycling stability, retaining 92 % of its initial charge after 5500 cycles. The enhanced electrochemical performances of such ternary composite indicate a promising future as electrode material for electrochemical energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Xu, S.F. Yue, Z.Y. Sui, X.T. Zhang, S.S. Hou, G.P. Cao et al., What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci. 4, 2826–2830 (2011)

    Article  Google Scholar 

  2. K. Liang, T.L. Gu, Z.Y. Cao, X.Z. Tang, W.C. Hu, B.Q. Wei, In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy 9, 245–251 (2014)

    Article  Google Scholar 

  3. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    Article  Google Scholar 

  4. T.A. Silva, H. Zanin, E. Saito, R.A. Medeiros, F.C. Vicentini, E.J. Corat et al., Electrochemical behavior of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material. Electrochim. Acta 119, 114–119 (2014)

    Article  Google Scholar 

  5. M.S. Wu, C.J. Lin, C.L. Ho, Multilayered architecture of graphene nanosheets and MnO2 nanowires as an electrode material for high-performance supercapacitors. Electrochim. Acta 81, 44–48 (2012)

    Article  Google Scholar 

  6. J.J. Xu, Y. Tian, R. Peng, Y.Z. Xian, Q. Ran, L.T. Jin, Ferrocene clicked poly(3,4-ethylenedioxythiophene) conducting polymer: characterization, electrochemical and electrochromic properties. Electrochem. Commun. 11, 1972–1975 (2009)

    Article  Google Scholar 

  7. G.X. Wang, Q.Q. Tang, H. Bao, X.W. Li, G.C. Wang, Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. J. Power Sources 241, 231–238 (2013)

    Article  Google Scholar 

  8. D. Yoo, J. Kim, J.H. Kim, Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 7(5), 717–730 (2014)

    Article  Google Scholar 

  9. F. Alvi, M.K. Ram, P.A. Basnayaka, E. Stefanakos, Y. Goswami, A. Kumar, Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta 56, 9406–9412 (2011)

    Article  Google Scholar 

  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  11. A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    Article  Google Scholar 

  12. L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010)

    Article  Google Scholar 

  13. I. Cha, E.J. Lee, H.S. Park, J.-H. Kim, Y.H. Kim, C. Song, Facile electrochemical synthesis of polydopamine-incorporated graphene oxide/PEDOT hybrid thin films for supercapacitive behaviors. Synth. Met. 195, 162–166 (2014)

    Article  Google Scholar 

  14. C.Y. Chu, J.T. Tsai, C.L. Sun, Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications. Int. J. Hydrogen Energy 37, 13880–13886 (2012)

    Article  Google Scholar 

  15. J. Chen, C.Y. Jia, Z.Q. Wan, Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synth. Met. 189, 69–76 (2014)

    Article  Google Scholar 

  16. B. Winther-Jensen, K. West, Vapor-phase polymerization of 3,4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37(12), 4538–4543 (2004)

    Article  Google Scholar 

  17. J.P. Lock, S.G. Im, K.K. Gleason, Oxidative chemical vapor deposition of electrically conducting poly(3,4-ethylenedioxythiophene) films. Macromolecules 39(16), 5326–5329 (2006)

    Article  Google Scholar 

  18. A. Mohammadi, M.-A. Hasan, B. Liedberg, I. Lundström, W.R. Salaneck, Chemical vapour deposition (CVD) of conducting polymers: polypyrrole. Synth. Met. 14, 189–197 (1986)

    Article  Google Scholar 

  19. S. Nair, S. Natarajan, S.H. Kim, Fabrication of electrically conducting polypyrrole-poly(ethylene oxide) composite nanofibers. Macromol. Rapid Commun. 26, 1599–1603 (2005)

    Article  Google Scholar 

  20. F. Granato, A. Bianco, C. Bertarelli, G. Zerbi, Composite polyamide 6/polypyrrole conductive nanofibers. Macromol. Rapid Commun. 30, 453–458 (2009)

    Article  Google Scholar 

  21. Y. Chen, J.H. Xu, Y.W. Mao, Y.J. Yang, W.Y. Yang, S.B. Li, Electrochemical performance of graphene-polyethylenedioxythiophene nanocomposites. Mater. Sci. Eng., B 178, 1152–1157 (2013)

    Article  Google Scholar 

  22. Y.J. Yang, L.N. Zhang, S.B. Li, Z.M. Wang, J.H. Xu, W.Y. Yang et al., Vapor phase polymerization deposition conducting polymer nanocomposites on porous dielectric surface as high performance electrode materials. Nano-Micro Lett. 5(1), 40–46 (2013)

    Article  Google Scholar 

  23. Y.J. Yang, S.B. Li, W.Y. Yang, W.T. Yuan, J.H. Xu, Y.D. Jang, In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl. Mater. Interfaces 6, 13807–13814 (2014)

    Article  Google Scholar 

  24. H. Zhou, W. Yao, G. Li, J. Wang, Y. Lu, Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon 59, 495–502 (2013)

    Article  Google Scholar 

  25. S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu et al., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855–1865 (2011)

    Article  Google Scholar 

  26. W.F. Chen, S.R. Li, C.H. Chen, L.F. Yan, Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23, 5679–5683 (2011)

    Article  Google Scholar 

  27. Z. Jin, J. Yao, C. Kittrell, J.M. Tour, Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5, 4114–4117 (2011)

    Google Scholar 

  28. X.J. Wang, K.Y. Wong, Effects of a base coating used for electropolymerization of poly(3,4-ethylenedioxythiophene) on indium tin oxide electrode. Thin Solid Films 515, 1573–1578 (2006)

    Article  Google Scholar 

  29. J. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C 116, 5420–5426 (2012)

    Article  Google Scholar 

  30. W.J. Wang, W. Lei, T.Y. Yao, X.F. Xia, W.J. Huang, Q.L. Hao et al., One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochim. Acta 108, 118–126 (2013)

    Article  Google Scholar 

  31. W.W. Chiu, J. Travas-Sejdic, R.P. Cooney, G.A. Bowmaker, Studies of dopant effects in poly(3,4-ethylenedioxythiophene) using Raman spectroscopy. J. Raman Spectrosc. 37, 1354–1361 (2006)

    Article  Google Scholar 

  32. G.H. Kim, D.H. Hwang, S.I. Woo, Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Phys. Chem. Chem. Phys. 14, 3530–3536 (2012)

    Article  Google Scholar 

  33. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001)

    Article  Google Scholar 

  34. W.T. Wang, G.Y. Xu, X.T. Cui, G. Sheng, X.L. Luo, Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens. Bioelectron. 58, 153–156 (2014)

    Article  Google Scholar 

  35. A. Burke, Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support provided by National Natural Science Foundation of China (NSFC) (No. 51477026 and No. 61471085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Xu, J., Yang, Y. et al. PEDOT:PSS/graphene/PEDOT ternary film for high performance electrochemical electrode. J Mater Sci: Mater Electron 26, 8292–8300 (2015). https://doi.org/10.1007/s10854-015-3494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3494-1

Keywords

Navigation