Advertisement

Influence of thermal annealing on structural properties and oxide charge of LiNbO3 films

  • M. SumetsEmail author
  • A. Kostyuchenko
  • V. Ievlev
  • S. Kannykin
  • V. Dybov
Article

Abstract

C-oriented polycrystalline lithium niobate (LiNbO3) films have been deposited on Si substrate by the radio-frequency magnetron sputtering method in an Ar atmosphere and Ar + O2 gas mixture. All as-grown LiNbO3 films manifested positive fixed oxide charge regardless of the sputtering conditions. Donor centers are formed in Si substrate because of diffusion of O2 molecules during sputtering process. Thermal annealing (TA) of the deposited films leads to increase in the surface roughness and grain size as well as formation of LiNb3O8 phase in the studied films. Also, TA resulting in the decline of positive oxide charge due to the diffusion of oxygen molecules into LiNbO3 films from air and out-diffusion from Si substrate.

Keywords

Oxygen Vacancy LiNbO3 Lithium Niobate Antisite Defect Oxide Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Nashimoto, M.J. Cima, P.C. McIntyre, W.E. Rhine, J. Mater. Res. 10, 2564 (1995)CrossRefGoogle Scholar
  2. 2.
    B.J. Curtis, H.R. Brunner, Mater. Res. Bull. 10, 515 (1975)CrossRefGoogle Scholar
  3. 3.
    S. Kondo, S. Miyazawa, S. Fusimi, K. Sugii, Appl. Phys. Lett. 26, 489 (1975)CrossRefGoogle Scholar
  4. 4.
    T.-H. Lee, F.-T. Hwang, C.-T. Lee, H.-Y. Lee, Mater. Sci. Eng. 136, 92 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Nishida, M. Shimizu, T. Horiuchi, T. Shiosaki, K. Matsushige, Jpn. J. Appl. Phys. 34, 5113 (1995)CrossRefGoogle Scholar
  6. 6.
    V. Iyevlev, A. Kostyuchenko, M. Sumets, V. Vakhtel, J. Mater. Sci. Mater. Electron. 22, 1258 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Margueron, A. Bartasyte, V. Plausinaitiene, A. Abrutis, P. Boulet, V. Kubilius, Z. Saltyte, Proc. SPIE 8626, 862612 (2013)CrossRefGoogle Scholar
  8. 8.
    D.G. Lim, B.S. Jang, S.I. Moon, C.Y. Won, J. Solid State Electron. 45, 1159 (2001)CrossRefGoogle Scholar
  9. 9.
    S. Shandilya, M. Tomar, K. Sreenivas, V. Gupta, J. Phys. D Appl. Phys. 42, 095303 (2009)CrossRefGoogle Scholar
  10. 10.
    N.S.L.S. Vasconcelos, J.S. Vasconcelos, V. Bouquet, S.M. Zanetti, E.R. Leite, E. Longo, L.E.B. Soledade, F.M. Pontes, M. Guilloux-Viry, A. Perrin et al., Thin Solid Films 436, 213 (2003)CrossRefGoogle Scholar
  11. 11.
    V.M. Ievlev, M.P. Sumets, A.V. Kostyuchenko, Mater. Sci. Forum 700, 53 (2012)CrossRefGoogle Scholar
  12. 12.
    D.A. Kiselev, R.N. Zhukov, A.S. Bykov, M.I. Voronova, K.D. Shcherbachev, M.D. Malinkovich, Y.N. Parkhomenko, Inorg. Mater. 50, 419 (2014)CrossRefGoogle Scholar
  13. 13.
    V. Ievlev, M. Sumets, A. Kostyuchenko, N. Bezryadin, J. Mater, Sci. Mater. Electron. 24, 1651 (2013)CrossRefGoogle Scholar
  14. 14.
    V. Edon, D. Re`miens, S. Saada, Appl. Surf. Sci. 256, 1455 (2009)CrossRefGoogle Scholar
  15. 15.
    A.Z. Simo˜es, M.A. Zaghete, B.D. Stojanovic, A.H. Gonzalez, J. Eur. Ceram. Soc. 24, 1607 (2004)CrossRefGoogle Scholar
  16. 16.
    F.J. Gordillo-Va´zqueza, C.N. Afonso, J. Appl. Phys. 92, 7651 (2002)CrossRefGoogle Scholar
  17. 17.
    V. Ievlev, M. Sumets, A. Kostyuchenko, O. Ovchinnikov, V. Vakhtel, S. Kannykin, Thin Solid Films 542, 289 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Sumets, V. Ievlev, A. Kostyuchenko, V. Vakhtel, S. Kannykin, A. Kobzev, Thin Solid Films 552, 32 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, G. Zhang, J. Appl. Phys. 87, 4410 (2000)CrossRefGoogle Scholar
  20. 20.
    J. Blumel, E. Born, T. Metzger, J. Phys. Chem. Solids 55, 589 (1994)CrossRefGoogle Scholar
  21. 21.
    R.J. Esdaile, J. Appl. Phys. 58, 1070 (1985)CrossRefGoogle Scholar
  22. 22.
    H. Akazawa, M. Shimada, Phys. Stat. Sol. a 203, 2823 (2006)CrossRefGoogle Scholar
  23. 23.
    H. Akazawa, M. Shimada, J. Mater. Res. 22, 1726 (2007)CrossRefGoogle Scholar
  24. 24.
    D.M. Smyth, Ferroelectrics 50, 93 (1983)CrossRefGoogle Scholar
  25. 25.
    H. Donnerberg, S.M. Tomlinson, C.R.A. Catlow, O.F. Schirmer, Phys. Rev. B 40, 11909 (1989)CrossRefGoogle Scholar
  26. 26.
    M.V. Raymond, D.M. Smyth, J. Phys. Chem. Solids 57, 1507 (1996)CrossRefGoogle Scholar
  27. 27.
    U. Gösele, T.Y. Tan, Appl. Phys. A 28, 79 (1982)CrossRefGoogle Scholar
  28. 28.
    U. Gösele, Ann. Rev. Mater. Sci. 18, 257 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Center of Gravitational Wave AstronomyUniversity of Texas at BrownsvilleBrownsvilleUSA
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations