Skip to main content
Log in

Effects of Y2O3 substitution on microwave dielectric properties of Ba(Co0.6Zn0.38)1/3Nb2/3O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Y2O3 substitution on the microstructure and microwave dielectric properties of Ba(Co0.6−xYxZn0.38)1/3Nb2/3O3 (x = 0–0.06) ceramics prepared by the conventional solid-state route technique were investigated. The X-ray diffraction results presented that all the well sintered samples exhibited the main phase BaZn0.33Nb0.67O3–Ba3CoNb2O9 and a certain amount of Ba8CoNb6O24 second phase. The 1:2 B-site cation ordering degree was found to influenced by the replacement of Y3+, especially for x = 0.02. Then the scanning electron microscopy pictures of the optimally well-sintered (1375 °C for 20 h) ceramics has shown a dense microstructure. Although the ε r almost kept unchanged, appropriate doping content would greatly improve the Q × f value. Meanwhile, the τ f value increased slightly with increasing x. At last, the excellent microwave dielectric properties of ε r  = 35.21, Q × f = 72,046 GHz, τ f  = 3.65 ppm/°C were obtained for x = 0.02 sintered in air at 1375 °C for 20 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.P. Ma, L. Yi, S.Y. Shu, X.M. Chen, H. Gu, J. Am. Ceram. Soc. 98, 520 (2015)

    Article  Google Scholar 

  2. J.J. Bian, Y.F. Dong, G.X. Song, J. Am. Ceram. Soc. 91, 1182 (2008)

    Article  Google Scholar 

  3. F. Shi, H. Dong, J. Appl. Phys. 111, 014111 (2012)

    Article  Google Scholar 

  4. P.P. Ma, L. Yi, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 96(6), 1795 (2013)

    Article  Google Scholar 

  5. J.J. Bian, G.X. Song, K. Yan, J. Eur. Ceram. Soc. 27, 2817 (2007)

    Article  Google Scholar 

  6. Y. Dai, G. Zhao, H. Liu, J. Appl. Phys. 105, 034111 (2009)

    Article  Google Scholar 

  7. X. Wang, Y.X. Li, J. Li, G.L. Yu, L. Zuo, H.W. Zhang, J. Mater. Sci. Mater. Electron. 25(11), 4720 (2014)

    Article  Google Scholar 

  8. Z.W. Wang, B.Y. Huang, L.X. Wang, Z.X. Fu, Q.T. Zhang, J. Mater. Sci. Mater. Electron. 26(2), 1107 (2015)

    Article  Google Scholar 

  9. F. Azough, C. Leach, R. Freer, J. Eur. Ceram. Soc. 26, 2877 (2006)

    Article  Google Scholar 

  10. L. Wang, H. Zang, Y. Leng, F. Shi, X.P. Jing, J. Mater. Sci. Mater. Electron. 25(8), 3403 (2014)

    Article  Google Scholar 

  11. C.T. Lee, Y.C. Lin, C.Y. Huang, C.Y. Su, C.L. Hu, J. Am. Ceram. Soc. 90, 483 (2007)

    Article  Google Scholar 

  12. Z.F. Wang, B.Y. Huang, L.X. Huang, Z.X. Fu, Q.T. Zhang, J. Mater. Sci. Mater. Electron. 26(6), 4273 (2015)

    Article  Google Scholar 

  13. D.M. Wei, H.L. Dong, H. Zhang, L. Wang, L.X. Li, F. Shi, J. Mater. Sci. Mater. Electron. 25(6), 2749 (2014)

    Article  Google Scholar 

  14. H. Wu, P.K. Davies, J. Am. Ceram. Soc. 89, 2239 (2006)

    Google Scholar 

  15. S.M. Moussa, R.M. Ibberson, M. Bieringer, A.N. Fitch, M.J. Rosseinsky, Chem. Mater. 15, 2527 (2003)

    Article  Google Scholar 

  16. A.G. Belous, O.V. Ovchar, O.V. Kramarenko, J. Bezjak, B. Jancar, D. Suvorov, G. Annino, Ferroelectrics 367, 149 (2008)

    Article  Google Scholar 

  17. C.W. Ahn, H.J. Jang, S. Nahm, H.M. Park, H.J. Lee, J. Eur. Ceram. Soc. 23, 2473 (2003)

    Article  Google Scholar 

  18. E. Koga, Y. Yamagishi, H. Moriwake, K. Kakimoto, H. Ohsato, J. Electroceram. 17, 375 (2006)

    Article  Google Scholar 

  19. M. Li, W.Z. Lu, W. Lei, X.H. Wang, J.M. Wu, J. Mater. Sci. Mater. Electron. 24(8), 2675 (2013)

    Google Scholar 

  20. I.N. Lin, C.T. Chia, H.L. Liu, H.F. Cheng, R. Freer, M. Barwick, F. Azough, J. Appl. Phys. 102, 044112 (2007)

    Article  Google Scholar 

  21. H. Wu, P.K. Davies, J. Am. Ceram. Soc. 89, 2250 (2006)

    Google Scholar 

  22. P.J. Liao, T. Qiu, J. Yang, X.Y. Lu, Electron. Mater. Lett. 10, 121 (2014)

    Article  Google Scholar 

  23. M.S. Fu, X.Q. Liu, X.M. Chen, Y.W. Zeng, J. Am. Ceram. Soc. 93, 787 (2000)

    Article  Google Scholar 

  24. M.R. Varma, M.T. Sebastian, J. Eur. Ceram. Soc. 27, 2829 (2007)

    Article  Google Scholar 

  25. F. Shi, H. Dong, Dalton Trans. 40, 11591 (2011)

    Article  Google Scholar 

  26. H. Wu, P.K. Davies, J. Am. Ceram. Soc. 89, 2239 (2006)

    Google Scholar 

  27. F. Azough, C. Leach, R. Freer, J. Eur. Ceram. Soc. 26, 1883 (2006)

    Article  Google Scholar 

  28. H. Hughes, F. Azough, R. Freer, D. Iddles, J. Eur. Ceram. Soc. 25, 2755 (2005)

    Article  Google Scholar 

  29. A.G. Belous, O.V. Ovchar, A.V. Kramarenko, J. Bostjian, B. Jancar, D. Suvorov, Inorg. Mater. 46, 530 (2010)

    Article  Google Scholar 

  30. P.K. Davies, J.Z. Tong, J. Am. Ceram. Soc. 80, 1728 (1997)

    Google Scholar 

  31. P.P. Ma, L. Yi, X.Q. Liu, L. Li, X.M. Chen, J. Am. Ceram. Soc. 96(11), 3419 (2013)

    Article  Google Scholar 

  32. A. Belous, O. Ovchar, Acta Phys. Pol. A 117, 221 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhang, Y., Yang, X. et al. Effects of Y2O3 substitution on microwave dielectric properties of Ba(Co0.6Zn0.38)1/3Nb2/3O3 ceramics. J Mater Sci: Mater Electron 26, 7683–7689 (2015). https://doi.org/10.1007/s10854-015-3409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3409-1

Keywords

Navigation