Skip to main content
Log in

Characterization of Cu2ZnSnSe4 (CZTSe) nanoparticles synthesized via solvothermal method for solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Stannite Cu2ZnSnSe4 (CZTSe) nanoparticles were synthesized using a simple solvothermal process at low temperatures using ethylenediamine as a solvent. The structures and morphologies of CZTSe nanoparticles were characterized as functions of various zinc salts in the precursors. Nanosized CZTSe particles, formed with zinc chloride as the source of zinc and obtained at 240 °C after 30 min of the aforementioned process, exhibited a single CZTSe phase. Increasing the processing duration to 6 h markedly increased the crystallinity of heat treated powders. All particles that were obtained after 6 h 240 °C from various zinc salts exhibited a single tetragonal phase with particle sizes in the range of 30–60 nm. CZTSe nanoparticles that were obtained from zinc chloride and zinc acetylacetonate had better crystallinity compared to particles obtained from other zinc salts. The structural variation in CZTSe that was synthesized from zinc chloride was observed as a function of Cu/(Zn + Sn) ratio. A Cu poor and Zn rich conditions resulted into a highly crystalline CZTSe phase with relatively smooth and closely packed morphology. The CZTSe nanoparticles, obtained from ZnCl2, were evaluated for potential use in solar cells via preparing precursor ink. The contents of the precursor ink were fixed to Cu/(Zn + Sn) = 0.8 and Zn/Sn = 1.2, and the ink was coated onto Mo substrates via drop casting. The GIXRD patterns of the film showed single CZTSe phase without any binary phases throughout the film. These results demonstrated that the as formed CZTSe nanoparticles are suitable for use as absorber layers in low-cost solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012)

    Article  Google Scholar 

  2. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T.K. Todorov, D.B. Mitzi, Energy Environ. Sci. 5, 7060 (2012)

    Article  Google Scholar 

  3. G.S. Babu, Y.B.K. Kumar, P.U. Bhaskar, V.S. Raja, Sol. Energy Mater. Sol. Cells 96, 442 (2006)

    Google Scholar 

  4. S. Jung, J. Gwak, J.H. Yun, S.J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K.S. Shin, K.H. Yoon, Thin Solid Films 535, 52 (2013)

    Article  Google Scholar 

  5. P.M.P. Salomé, P.A. Fernandes, A.F. da Cunha, Thin Solid Films 517, 2531 (2009)

    Article  Google Scholar 

  6. M. Ganchev, L. Kaupmees, J. Iliyna, J. Raudoja, O. Volobujeva, H. Dikov, M. Altosaar, E. Mellikov, T. Varema, Energy Procedia 2, 65 (2010)

    Article  Google Scholar 

  7. O. Volobujeva, J. Raudoja, E. Mellikov, M. Grossberg, S. Bereznev, R. Traksmaa, J. Phys. Chem. Solids 70, 567 (2009)

    Article  Google Scholar 

  8. Z. Chen, L. Han, L. Wan, C. Zhang, H. Niu, J. Xu, Appl. Surf. Sci. 257, 8490 (2011)

    Article  Google Scholar 

  9. L. Shao, J. Zhang, C. Zou, W. Xie, Phys. Procedia 32, 640 (2012)

    Article  Google Scholar 

  10. R.A. Wibowo, E.S. Lee, B. Munir, K.H. Kim, Phys. Status Solidi A 204, 3373 (2007)

    Article  Google Scholar 

  11. R.A. Wibowo, W.H. Jung, K.H. Kim, J. Phys. Chem. Solids 71, 1702 (2010)

    Article  Google Scholar 

  12. A.S. Ionkin, B.M. Fish, W.J. Marshall, R.H. Senigo, Sol. Energy Mater. Sol. Cells 104, 23 (2012)

    Article  Google Scholar 

  13. G.M. Ilari, C.M. Fella, C. Ziegler, A.R. Uhl, Y.E. Romanyuk, A.N. Tiwari, Sol. Energy Mater. Sol. Cells 104, 125 (2012)

    Article  Google Scholar 

  14. K. Timmo, M. Altosaar, J. Raudoja, K. Muska, M. Pilvet, M. Kauk, T. Varema, M. Danilson, O. Volobujeva, E. Mellikov, Sol. Energy Mater. Sol. Cells 94, 1889 (2010)

    Article  Google Scholar 

  15. W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, M. Matsumura, Electrochim. Acta 88, 436 (2013)

    Article  Google Scholar 

  16. A. Nagaokaa, K. Yoshino, H. Taniguchi, T. Taniyama, H. Miyake, J. Cryst. Growth 354, 147 (2012)

    Article  Google Scholar 

  17. Y. Liu, D.Y. Kong, H. You, C.L. Chen, X.H. Lin, J. Brugger, J. Mater. Sci. Mater. Electron. 24, 529 (2013)

    Article  Google Scholar 

  18. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 3, 34 (2013)

    Article  Google Scholar 

  19. C. Leidholm, C. Hotz, A. Breeze, C. Sunderland, W. Ki, D. Zehnder, Final report: sintered CZTS nanoparticle solar cells on metal foil, NREL/SR-5200–56501 (2012)

  20. Q. Guo, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 131, 11672 (2009)

    Article  Google Scholar 

  21. O.V. Galán, M. Courel, J.A.A. Arvizu, Y. Sánchez, M.E. Rodríguez, E. Saucedo, D.S. Jiménez, M. Titsworth, J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-2196-4

    Google Scholar 

  22. Y.F. Du, W.H. Zhoun, Y.L. Zhou, P.W. Li, J.Q. Fan, J.J. He, S.X. Wu, Mater. Sci. Semicond. Process. 15, 214 (2012)

    Article  Google Scholar 

  23. M.H. Chiang, Y.S. Fu, T.F. Guo, H.L. Liu, W.T. Lin, Mater. Lett. 83, 192 (2012)

    Article  Google Scholar 

  24. W. Liu, M. Wu, L. Yan, R. Zhou, S. Si, S. Zhang, Q. Zhang, Mater. Lett. 65, 2554 (2011)

    Article  Google Scholar 

  25. H. Wei, W. Guo, Y. Sun, Z. Yang, Y. Zhang, Mater. Lett. 64, 1424 (2010)

    Article  Google Scholar 

  26. T. Rath, W. Haas, A. Pein, R. Saf, E. Maier, B. Kunert, F. Hofer, R. Resel, G. Trimmel, Sol. Energy Mater. Sol. Cells 101, 87 (2012)

    Article  Google Scholar 

  27. Z.Y. Li, J.H. Shi, Q.Q. Liu, Y.W. Chen, Z. Sun, Z. Yang, S.M. Huang, Nanotechnology 22, 265615 (2011)

    Article  Google Scholar 

  28. L. Shi, C. Pei, Y. Xu, Q. Li, J. Am. Chem. Soc. 133, 10328 (2011)

    Article  Google Scholar 

  29. A. Shavel, J. Arbiol, A. Cabot, J. Am. Chem. Soc. 132, 4514 (2010)

    Article  Google Scholar 

  30. Y.G. Chun, K.H. Kim, K.H. Yoon, Thin Solid Films 480–481, 46 (2005)

    Article  Google Scholar 

  31. M. Cao, Y. Shen, J. Cryst. Growth 318, 1117 (2011)

    Article  Google Scholar 

  32. F. Hergert, R. Hock, Thin Solid Films 515, 5953 (2007)

    Article  Google Scholar 

  33. A.J. Smith, P.E. Meek, W.Y. Liang, J. Phys. C Solid State Phys. 10, 1321 (1977)

    Article  Google Scholar 

  34. X. Lin, J. Kavalakkatt, K. Kornhuber, D.A. Ras, S. Schorr, M.C.L. Steiner, A. Ennaoui, RSC Adv. 2, 9894 (2012)

    Article  Google Scholar 

  35. P.M.P. Salomé, P.A. Fernandes, J. Leitão, M.G. Sousa, J.P. Teixeira, A.F. da Cunha, J. Mater. Sci. 49, 7425 (2014)

    Article  Google Scholar 

  36. G. Suresh Babu, Y.B. Kishore Kumar, P. Uday Bhaskar, V. Sundara Raja, Sol. Energy Mater. Sol. 94, 221 (2010)

    Article  Google Scholar 

  37. M.M. Islam, M.A. Halim, C. Joy, X. Luo, T. Sakurai, N. Sakai, T. Kato, H. Sugimoto, H. Tampo, H. Shibata, S. Niki, A. Katsuhiro, J. Phys Conf. Ser. 596, 012019 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hsin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalapathy, R.B.V., Das, S., Ma, JS. et al. Characterization of Cu2ZnSnSe4 (CZTSe) nanoparticles synthesized via solvothermal method for solar cell applications. J Mater Sci: Mater Electron 26, 7673–7682 (2015). https://doi.org/10.1007/s10854-015-3408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3408-2

Keywords

Navigation