Skip to main content
Log in

Catalyst Ni-assisted synthesis of interweaved SiO/G/CNTs&CNFs composite as anode material for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An interweaved silicon monoxide/graphite/carbon nanotubes&carbon nanofibers (SiO/G/CNTs&CNFs) composite has been easily synthesized by using high-energy wet ball milling, spray drying in combination with a subsequent chemical vapor deposition method. CNTs&CNFs grow on the interface and the internal interspace of the spherical composite composed of SiO and graphite during the calcination process. The existence of CNTs&CNFs and graphite not only provides a buffer medium to accommodate the volume expansion of SiO during the electrochemical reaction process, but also provides high electrical conductivity for electrode material. When used as an anode material, a reversible specific capacity is approximate 672.3 mAh g−1 after 100 cycles at a current density of 100 mA g−1, which is about 1.8 times larger than that of the commercial graphite electrode (372 mA g−1). Due to the facile synthesis process of the composite and excellent performance of the as-prepared electrode, great commercial potential is envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364–5457 (2013)

    Article  Google Scholar 

  2. M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)

    Article  Google Scholar 

  3. Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, Nat. Mater. 8, 320 (2009)

    Article  Google Scholar 

  4. J. Yang, X.Y. Zhou, J. Li, Y.L. Zou, J.J. Tang, Mater. Chem. Phys. 135, 445–450 (2012)

    Article  Google Scholar 

  5. H. Nozaki, K. Nagaoka, K. Hoshi, N. Ohta, M. Inagaki, J. Power Sources 194, 486–493 (2009)

    Article  Google Scholar 

  6. T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine, J. Power Sources 129, 96 (2004)

    Article  Google Scholar 

  7. C.M. Park, J.H. Kim, H. Kim, H. Sohn, J. Chem. Soc. Rev. 39, 3115–3141 (2010)

    Article  Google Scholar 

  8. H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Ed. 47, 10151–10154 (2008)

    Article  Google Scholar 

  9. P.-C. Chen, X. Jing, H. Chen, C. Zhou, Nano Res. 4(3), 290–296 (2011)

    Article  Google Scholar 

  10. R. Ruffo, S.S. Hong, C.K. Chan, R.A. Huggins, Y. Cui, J. Phys. Chem. C 113, 11390–11398 (2009)

    Article  Google Scholar 

  11. T.H. Hwang, Y.M. Lee, B.-S. Kong, J.-S. Seo, J.W. Choi, Nano Lett. 12, 802–807 (2012)

    Article  Google Scholar 

  12. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31–35 (2008)

    Article  Google Scholar 

  13. T.D. Hatchard, J.R. Dahn, J. Electrochem. Soc. 151, A838–A842 (2004)

    Article  Google Scholar 

  14. U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources 2007, 163 (1003)

    Google Scholar 

  15. G. Zhao, L. Zhang, Y. Meng, N. Zhang, K. Sun, Mater. Lett. 96, 170–173 (2013)

    Article  Google Scholar 

  16. W.S. Kim, Y. Hwa, J.H. Shin, M. Yang, H.J. Sohn, S.H. Hong, Nanoscale 6, 4297–4302 (2014)

    Article  Google Scholar 

  17. L.F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Nano Lett. 9, 491–495 (2008)

    Article  Google Scholar 

  18. W. Weng, H. Lin, X. Chen, J. Ren, Z. Zhang, L. Qiu, G. Guan, H. Peng, J. Mater. Chem. A 2, 9306–9312 (2014)

    Article  Google Scholar 

  19. Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P.A. van Aken, J. Maier, Adv. Mater. 22, 2247–2250 (2010)

    Article  Google Scholar 

  20. X. Zhu, H. Chen, Y. Wang, L. Xia, Q. Tan, H. Li, Z. Zhong, F. Su, X. Zhao, J. Mater. Chem. A 1, 4483–4489 (2013)

    Article  Google Scholar 

  21. Y. Nagao, H. Sakaguchi, H. Honda, J. Electrochem. Soc. 151, A1572–A1575 (2004)

    Article  Google Scholar 

  22. B. Liu, A. Abouimrane, Y. Ren, M. Balasubramanian, D. Wang, Z.Z. Fang, K. Amine, Chem. Mater. 24, 4653–4661 (2012)

    Article  Google Scholar 

  23. M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata, J. Electrochem. Soc. 152, A2089–A2091 (2005)

    Article  Google Scholar 

  24. H. Yamamura, S. Nakanishi, H. Iba, J. Power Sources 232, 264–269 (2013)

    Article  Google Scholar 

  25. Y. Hwa, C.-M. Park, H.-J. Sohn, J. Power Sources 222, 129–134 (2013)

    Article  Google Scholar 

  26. M. Li, X. Hou, Y. Sha, J. Wang, S. Hu, X. Liu, Z. Shao, J. Power Sources 248, 721–728 (2014)

    Article  Google Scholar 

  27. M. Zhang, X. Hou, J. Wang, M. Li, S. Hu, Z. Shao, X. Liu, J. Alloys Compd. 588, 206–211 (2014)

    Article  Google Scholar 

  28. W.-Q. Han, A. Zettl, Nano Lett. 3, 681–683 (2003)

    Article  Google Scholar 

  29. J. Bae, Colloid Polym. Sci. 289, 1233–1241 (2011)

    Article  Google Scholar 

  30. S.H. Nam, K.S. Kim, H.-S. Shim, S.H. Lee, G.Y. Jung, W.B. Kim, Nano Lett. 11, 3655–3662 (2011)

    Article  Google Scholar 

  31. X.Y. Zhou, J.J. Tang, J. Yang, J. Xie, L.L. Ma, Electrochim. Acta 87, 663–668 (2013)

    Article  Google Scholar 

  32. X. Wang, Z. Wen, Y. Liu, X. Xu, J. Lin, J. Power Sources 189, 121–126 (2009)

    Article  Google Scholar 

  33. N. Du, Y.F. Xu, H. Zhang, J.X. Yu, C.X. Zhai, D.R. Yang, Inorg. Chem. 50, 3320–3324 (2011)

    Article  Google Scholar 

  34. S. Grugeon, S. Laruelle, L. Dupont, J.M. Tarascon, Solid State Sci. 5, 895–904 (2003)

    Article  Google Scholar 

  35. W. Luo, X. Hu, Y. Sun, Y. Huang, J. Mater. Chem. 22, 8916–8921 (2012)

    Article  Google Scholar 

  36. L. Yue, H. Zhong, L. Zhang, Electrochim. Acta 76, 326–332 (2012)

    Article  Google Scholar 

  37. H. Li, X. Huang, L. Chen, Electrochem. Solid-State Lett. 1, 241–243 (1998)

    Article  Google Scholar 

  38. R. Mukherjee, R. Krishnan, T.M. Lu, N. Koratkar, Nano Energy 1, 518–533 (2012)

    Article  Google Scholar 

  39. T. Abe, H. Fukuda, Y. Iriyama et al., J. Electrochem. Soc. 151, A1120–A1123 (2004)

    Article  Google Scholar 

  40. M. Holzapfel, A. Martinent, F. Alloin et al., J. Electroanal. Chem. 546, 41–50 (2003)

    Article  Google Scholar 

  41. S. Yang, G. Huang, S. Hu, X. Hou, Y. Huang, M. Yue, G. Lei, Mater. Lett. 118, 8–11 (2014)

    Article  Google Scholar 

  42. M.G.S.R. Thomas, P.G. Bruce, J.B. Goodenough, J. Electrochem. Soc. 132, 1521–1528 (1985)

    Article  Google Scholar 

  43. T. Jiang, S. Zhang, X. Qiu, W. Zhu, L. Chen, Electrochem. Commun. 9, 930–934 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (NSFC, Nos. 51201066 and 51171065), the Natural Science Foundation of Guangdong Province (No. S2012020010937), the Science and Technology Project Foundation of Zhongshan City of Guangdong Province of China (no. 20123A326), and the Scientific Research Foundation of Graduate School of South China Normal University (Grant No. 2014ssxm17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhua Hou or Shejun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hou, X., Wang, J. et al. Catalyst Ni-assisted synthesis of interweaved SiO/G/CNTs&CNFs composite as anode material for lithium-ion batteries. J Mater Sci: Mater Electron 26, 7507–7514 (2015). https://doi.org/10.1007/s10854-015-3386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3386-4

Keywords

Navigation