Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Catalyst Ni-assisted synthesis of interweaved SiO/G/CNTs&CNFs composite as anode material for lithium-ion batteries

  • 344 Accesses

  • 6 Citations

Abstract

An interweaved silicon monoxide/graphite/carbon nanotubes&carbon nanofibers (SiO/G/CNTs&CNFs) composite has been easily synthesized by using high-energy wet ball milling, spray drying in combination with a subsequent chemical vapor deposition method. CNTs&CNFs grow on the interface and the internal interspace of the spherical composite composed of SiO and graphite during the calcination process. The existence of CNTs&CNFs and graphite not only provides a buffer medium to accommodate the volume expansion of SiO during the electrochemical reaction process, but also provides high electrical conductivity for electrode material. When used as an anode material, a reversible specific capacity is approximate 672.3 mAh g−1 after 100 cycles at a current density of 100 mA g−1, which is about 1.8 times larger than that of the commercial graphite electrode (372 mA g−1). Due to the facile synthesis process of the composite and excellent performance of the as-prepared electrode, great commercial potential is envisioned.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364–5457 (2013)

  2. 2.

    M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)

  3. 3.

    Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, Nat. Mater. 8, 320 (2009)

  4. 4.

    J. Yang, X.Y. Zhou, J. Li, Y.L. Zou, J.J. Tang, Mater. Chem. Phys. 135, 445–450 (2012)

  5. 5.

    H. Nozaki, K. Nagaoka, K. Hoshi, N. Ohta, M. Inagaki, J. Power Sources 194, 486–493 (2009)

  6. 6.

    T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine, J. Power Sources 129, 96 (2004)

  7. 7.

    C.M. Park, J.H. Kim, H. Kim, H. Sohn, J. Chem. Soc. Rev. 39, 3115–3141 (2010)

  8. 8.

    H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Ed. 47, 10151–10154 (2008)

  9. 9.

    P.-C. Chen, X. Jing, H. Chen, C. Zhou, Nano Res. 4(3), 290–296 (2011)

  10. 10.

    R. Ruffo, S.S. Hong, C.K. Chan, R.A. Huggins, Y. Cui, J. Phys. Chem. C 113, 11390–11398 (2009)

  11. 11.

    T.H. Hwang, Y.M. Lee, B.-S. Kong, J.-S. Seo, J.W. Choi, Nano Lett. 12, 802–807 (2012)

  12. 12.

    C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31–35 (2008)

  13. 13.

    T.D. Hatchard, J.R. Dahn, J. Electrochem. Soc. 151, A838–A842 (2004)

  14. 14.

    U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources 2007, 163 (1003)

  15. 15.

    G. Zhao, L. Zhang, Y. Meng, N. Zhang, K. Sun, Mater. Lett. 96, 170–173 (2013)

  16. 16.

    W.S. Kim, Y. Hwa, J.H. Shin, M. Yang, H.J. Sohn, S.H. Hong, Nanoscale 6, 4297–4302 (2014)

  17. 17.

    L.F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Nano Lett. 9, 491–495 (2008)

  18. 18.

    W. Weng, H. Lin, X. Chen, J. Ren, Z. Zhang, L. Qiu, G. Guan, H. Peng, J. Mater. Chem. A 2, 9306–9312 (2014)

  19. 19.

    Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P.A. van Aken, J. Maier, Adv. Mater. 22, 2247–2250 (2010)

  20. 20.

    X. Zhu, H. Chen, Y. Wang, L. Xia, Q. Tan, H. Li, Z. Zhong, F. Su, X. Zhao, J. Mater. Chem. A 1, 4483–4489 (2013)

  21. 21.

    Y. Nagao, H. Sakaguchi, H. Honda, J. Electrochem. Soc. 151, A1572–A1575 (2004)

  22. 22.

    B. Liu, A. Abouimrane, Y. Ren, M. Balasubramanian, D. Wang, Z.Z. Fang, K. Amine, Chem. Mater. 24, 4653–4661 (2012)

  23. 23.

    M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata, J. Electrochem. Soc. 152, A2089–A2091 (2005)

  24. 24.

    H. Yamamura, S. Nakanishi, H. Iba, J. Power Sources 232, 264–269 (2013)

  25. 25.

    Y. Hwa, C.-M. Park, H.-J. Sohn, J. Power Sources 222, 129–134 (2013)

  26. 26.

    M. Li, X. Hou, Y. Sha, J. Wang, S. Hu, X. Liu, Z. Shao, J. Power Sources 248, 721–728 (2014)

  27. 27.

    M. Zhang, X. Hou, J. Wang, M. Li, S. Hu, Z. Shao, X. Liu, J. Alloys Compd. 588, 206–211 (2014)

  28. 28.

    W.-Q. Han, A. Zettl, Nano Lett. 3, 681–683 (2003)

  29. 29.

    J. Bae, Colloid Polym. Sci. 289, 1233–1241 (2011)

  30. 30.

    S.H. Nam, K.S. Kim, H.-S. Shim, S.H. Lee, G.Y. Jung, W.B. Kim, Nano Lett. 11, 3655–3662 (2011)

  31. 31.

    X.Y. Zhou, J.J. Tang, J. Yang, J. Xie, L.L. Ma, Electrochim. Acta 87, 663–668 (2013)

  32. 32.

    X. Wang, Z. Wen, Y. Liu, X. Xu, J. Lin, J. Power Sources 189, 121–126 (2009)

  33. 33.

    N. Du, Y.F. Xu, H. Zhang, J.X. Yu, C.X. Zhai, D.R. Yang, Inorg. Chem. 50, 3320–3324 (2011)

  34. 34.

    S. Grugeon, S. Laruelle, L. Dupont, J.M. Tarascon, Solid State Sci. 5, 895–904 (2003)

  35. 35.

    W. Luo, X. Hu, Y. Sun, Y. Huang, J. Mater. Chem. 22, 8916–8921 (2012)

  36. 36.

    L. Yue, H. Zhong, L. Zhang, Electrochim. Acta 76, 326–332 (2012)

  37. 37.

    H. Li, X. Huang, L. Chen, Electrochem. Solid-State Lett. 1, 241–243 (1998)

  38. 38.

    R. Mukherjee, R. Krishnan, T.M. Lu, N. Koratkar, Nano Energy 1, 518–533 (2012)

  39. 39.

    T. Abe, H. Fukuda, Y. Iriyama et al., J. Electrochem. Soc. 151, A1120–A1123 (2004)

  40. 40.

    M. Holzapfel, A. Martinent, F. Alloin et al., J. Electroanal. Chem. 546, 41–50 (2003)

  41. 41.

    S. Yang, G. Huang, S. Hu, X. Hou, Y. Huang, M. Yue, G. Lei, Mater. Lett. 118, 8–11 (2014)

  42. 42.

    M.G.S.R. Thomas, P.G. Bruce, J.B. Goodenough, J. Electrochem. Soc. 132, 1521–1528 (1985)

  43. 43.

    T. Jiang, S. Zhang, X. Qiu, W. Zhu, L. Chen, Electrochem. Commun. 9, 930–934 (2007)

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (NSFC, Nos. 51201066 and 51171065), the Natural Science Foundation of Guangdong Province (No. S2012020010937), the Science and Technology Project Foundation of Zhongshan City of Guangdong Province of China (no. 20123A326), and the Scientific Research Foundation of Graduate School of South China Normal University (Grant No. 2014ssxm17).

Author information

Correspondence to Xianhua Hou or Shejun Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hou, X., Wang, J. et al. Catalyst Ni-assisted synthesis of interweaved SiO/G/CNTs&CNFs composite as anode material for lithium-ion batteries. J Mater Sci: Mater Electron 26, 7507–7514 (2015). https://doi.org/10.1007/s10854-015-3386-4

Download citation

Keywords

  • Composite Electrode
  • Graphite Particle
  • Carbon Nanofibres
  • Solid Electrolyte Interphase
  • Chemical Vapor Deposition Process