Skip to main content
Log in

Facile synthesis and conduction mechanism in RE-substituted oxide systems for enhanced thermoelectric performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth based oxide nanomaterials with doping of rare earth element Nd were synthesized by simplified sol–gel method. Elemental composition was Bi2Ca2−XRXCoO6 where R is for rare earth neodymium (Nd). Structural characterizations have shown monoclinic crystal structure with C2/c space group. Differential scanning calorimetery and thermogravimetric analysis were done for thermal behavior of nanomaterials. Thermal stability of samples were enhanced after doping of rare earth element. Electrical resistivity measurements were carried out as a function of temperature, which showed decrease in resistivity with increase in temperature. Thermal transport properties like thermal conductivity, thermal diffusivity and volumetric heat capacity were measured. Thermal conductivity measurements have shown lower values after doping. Variation in thermal transport properties with temperature are also discussed. These results suggest that Nd is the effective element for improving thermoelectric properties of bismuth based cobalt oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.C. Huang, C.I. Hung, Int. J. Therm. Sci. 64, 121–128 (2013)

    Article  Google Scholar 

  2. H. Alam, S. Ramakrishna, Nano Energy 2, 190–212 (2013)

    Article  Google Scholar 

  3. P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng. R 67, 19–63 (2010)

    Article  Google Scholar 

  4. D.M. Rowe (ed.), Thermoelectrics Handbook Macro to Nano (Taylor & Francis group, New York, 2006)

    Google Scholar 

  5. G.D. Tang, Z.H. Wang, X.N. Xu, L. Qiu, Y.W. Du, J. Appl. Phys. 107, 053715 (2010)

    Article  Google Scholar 

  6. M.A. Karri, E.F. Thacher, B.T. Helenbrook, Energy Convers. Manag. 52, 1596–1611 (2011)

    Article  Google Scholar 

  7. A. Bhaskar, Y.C. Huang, C.J. Liun, Ceram. Int. 40, 5937–5943 (2014)

    Article  Google Scholar 

  8. G. Constantinescua, M.A. Madrea, S. Rasekh, M.A. Torres, J.C. Diez, A. Sotelo, Ceram. Int. 40, 6255–6260 (2014)

    Article  Google Scholar 

  9. I.G. Deac, A. Vladescu, J. Magn. Magn. Mater. 365, 1–7 (2014)

    Article  Google Scholar 

  10. S. Demirel, S. Avci, E. Altin, S. Altin, M.E. Yakinci, Ceram. Int. 40, 5217–5222 (2014)

    Article  Google Scholar 

  11. S. Nasir, A.S. Saleemi, Fatima-tuz-Zahra, M. Anis-ur-Rehman, J. Alloys Compd. 572, 170–174 (2013)

    Article  Google Scholar 

  12. M. Anis-ur-Rehman, A. Maqsood, J. Phys. D Appl. Phys. 35, 2040–2047 (2002)

    Article  Google Scholar 

  13. Y. Liu, Y. Lin, L. Jiang, C.W. Nan, Z. Shen, J. Electroceram. 21, 748–751 (2008)

    Article  Google Scholar 

  14. K. Agilandeswari, A.R. Kumar, Adv. Powder Technol. 25, 904–909 (2014)

    Article  Google Scholar 

  15. A. Sotelo, S. Rasekh, M.A. Torres, P. Bosque, M.A. Madre, J.C. Diez, J. Solid State Chem. 221, 247–254 (2015)

    Article  Google Scholar 

  16. A. L. Northcross, Secondary organic aerosol (SOA) formation from monoterpene ozonolysis in the presence of inorganic aerosols: acid effects on SOA yields, UMI Dissertations Publishing United States, North California, (2007)

  17. A. Bhaskar, Z.R. Lin, C.-J. Liu, Energy Convers. Manag. 76, 63–67 (2013)

    Article  Google Scholar 

  18. N. Kumar, U. Parihar, R. Kumar, K.J. Patel, C.J. Panchal, N. Padha, Am. J. Mater. Sci. 2, 41–45 (2012)

    Article  Google Scholar 

  19. S. Okada, A. Sakai, T. Kanno, S. Yotsuhashi, H. Adachi, J. Appl. Phys. 105, 083711 (2009)

    Article  Google Scholar 

  20. D. Pelloquin, S. Hebert, O. Perez, V. Pralong, N. Nguyen, A. Maignan, J. Solid State Chem. 178, 792–799 (2005)

    Article  Google Scholar 

  21. F. Ahmed, A. Munir, M. Saqib, M. Anis-ur-Rehman, J. Supercond. Nov. Magn. 28, 961–964 (2015)

    Article  Google Scholar 

  22. S. Butt, Y. Ren, M.U. Farooq, B. Zhan, R.R. Sagar, Y. Lin, C.-W. Nan, Energy Convers. Manag. 83, 35–41 (2014)

    Article  Google Scholar 

  23. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, New York, 2009)

    Google Scholar 

  24. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Magn. Magn. Mater. 371, 69–76 (2014)

    Article  Google Scholar 

  25. A. Roy, T.A. Jamadar, A.K. Ghosh, Phys. C 488, 9–13 (2013)

    Article  Google Scholar 

  26. L.H. Yin, R. Ang, L.J. Li, B.C. Zhao, Y.K. Fu, X.B. Zhu, Z.R. Yang, W.H. Song, Y.P. Sun, Phys. B 406, 2914–2918 (2011)

    Article  Google Scholar 

  27. M. Yasin Shami, M.S. Awan, M. Anis-ur-Rehman, J. Alloys Compd. 509, 10139–10144 (2011)

    Article  Google Scholar 

  28. S. Butt, Y.C. Liu, J.L. Lan, K. Shehzad, B. Zhan, Y. Lin, C.W. Nan, J. Alloys Compd. 588, 277–283 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anis-ur-Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F., Munir, A., Khan, A.S. et al. Facile synthesis and conduction mechanism in RE-substituted oxide systems for enhanced thermoelectric performance. J Mater Sci: Mater Electron 26, 7460–7467 (2015). https://doi.org/10.1007/s10854-015-3380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3380-x

Keywords

Navigation