Skip to main content
Log in

Dual mode luminescence in rare earth (Er3+/Ho3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dual excitation properties have been introduced in ZnO nanoparticles (~10 nm) through lanthanide (Er3+/Ho3+) doping by inclusive co precipitation at room temperature. Monophasic hexagonal ZnO nanoparticles form hierarchical micro flowers as a consequence of lanthanide doping. The Stokes and anti Stokes emissions were investigated under UV (399 nm) and IR (980 nm) excitation. The down-conversion emission under band edge excitation is in the blue region and the up-conversion (UC) emission of lanthanide doped ZnO nanocrystals exhibit strong green and red fluorescence bands for ZnO:Er3+ and only green band for ZnO:Ho3+. Post synthesis annealing further improves luminescence properties in ZnO:Er3+ that exhibits triple mode excitation of fluorescence under UV as well as IR wavelengths 980 and 1550 nm, also confirmed by confocal fluorescence mapping. The measured dependence of pump power on UC emission suggest that lanthanide doping in ZnO leads to frequency up-conversion emission via two to three photon absorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Heer, K. Kompe, H. Gudel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16(23–24), 2102–2105 (2004). doi:10.1002/adma.200400772

    Article  Google Scholar 

  2. F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chem. Mater. 15(14), 2737–2743 (2003). doi:10.1021/cm0301930

    Article  Google Scholar 

  3. G.S. Yi, H.C. Lu, S.Y. Zhao, G. Yue, W.J. Yang, D.P. Chen, L.H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 4(11), 2191–2196 (2004). doi:10.1021/nl048680h

    Article  Google Scholar 

  4. L. Wang, R.X. Yan, Z.Y. Hao, L. Wang, J.H. Zeng, J. Bao, X. Wang, Q. Peng, Y.D. Li, Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44(37), 6054–6057 (2005). doi:10.1002/anie.200501907

    Article  Google Scholar 

  5. W. Chen, J.Z. Zhang, A.J. Joly, Optical properties and potential applications of doped semiconductor nanoparticles. J. Nanosci. Nanotechnol. 4(8), 919–947 (2004). doi:10.1166/jnn.2004.142

    Article  Google Scholar 

  6. R. Cheng, Y. Chen, Z. Li, X. Chen, P. Yang, H. Zhu, Y. Huang, Z. Sun, S. Huang, Citric acid-assisted growth of lanthanide ions co-doped one-dimensional upconversion microcrystals and their photovoltaic applications. J. Mater. Sci.: Mater. Electron. 25, 4066–4073 (2014). doi:10.1007/s10854-014-2130-9

    Google Scholar 

  7. Y. Miao, P. Wang, H. Guan1, and Y. Chen, Synthesis and up-conversion luminescence of NaGdF4:Yb3+, Tm3+. J Mater Sci. Mater Electron (2015). doi:10.1007/s10854-015-3132-y

  8. A. Gupta, A.D. Compaan, All-sputtered thin-film solar cell with transparent conducting oxide. Appl. Phys. Lett. 85, 684–686 (2004). doi:10.1063/1.1775289

    Article  Google Scholar 

  9. Z.L. Wang, Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu. Rev. Phys. Chem. 55, 159–196 (2004). doi:10.1146/annurev.physchem.55.091602.094416

    Article  Google Scholar 

  10. C.S. Rout, A.R. Raju, A. Govindaraj, C.N.R. Rao, Hydrogen sensors based on ZnO nanoparticles. Solid. State. Commun. 138(3), 136–138 (2006). doi:10.1016/j.ssc.2006.02.016

  11. Z.L. Wang, C.K. Lin, X.M. Liu, Y. Luo, Z.W. Quan, H.P. Xiang, L. Lin, tunable photoluminescent and cathodoluminescent properties of ZnO and ZnO:Zn phosphors. J. Phys. Chem. B. 110(19), 9469–9476 (2006). doi:10.1021/jp057214t

    Article  Google Scholar 

  12. G. Seisenberger, M.U. Ried, T. Endress, H. Buning, M. Hallek, C. Brauchle, Real-time Sin 31f0 gle-molecule imaging of the infection pathway of an adeno-associated virus. Science 294, 1929 (2001). doi:10.1126/science.1064103

    Article  Google Scholar 

  13. J.M. Daewas, P. Dekker, P. Burns, J.A. Piper, Self-frequency-doubling ytterbium lasers. Opt. Rev. 12, 101–104 (2005). doi:10.1007/s10043-004-0101-8

    Article  Google Scholar 

  14. G.S. Yi, B.Q. Sun, F.Z. Yang, D.P. Chen, Y.X. Zhou, J. Cheng, Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: ytterbium and erbium codoped lanthanum molybdate. Chem. Mater. 14(7), 2910–2914 (2002). doi:10.1021/cm0115416

    Article  Google Scholar 

  15. M.U. Staudt, S.R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, N. Gisin, Fidelity of an optical memory based on stimulated photon echoes. Phys. Rev. Lett. 98, 113601–113604 (2007). doi:10.1103/PhysRevLett.98.113601

    Article  Google Scholar 

  16. H. Desirena, E. De la Rosa, A.L. Diaz-Torres, A.G. Kumar, Concentration effect of Er3+ ion on the spectroscopic properties of Er3+and Yb3+/Er3+ co-doped phosphate glasses. Opt. Mater. 28(5), 560–568 (2006). doi:10.1016/j.optmat.2005.04.002

    Article  Google Scholar 

  17. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, Structure evaluation and highly enhanced luminescence of Dy3+-Doped ZnO nanocrystals by Li+ doping via combustion method. Langmuir 20(9), 3528–3531 (2004). doi:10.1021/la049874f

    Article  Google Scholar 

  18. A. Ishizumi, Y. Kanemitsu, Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method. App. Phys. Lett. 86, 253106–253108 (2005). doi:10.1063/1.1952576

    Article  Google Scholar 

  19. J. Wang, M.J. Zhou, S.K. Harik, Q. Li, D. Tang, M.W. Chu, C.H. Chen, Local electronic structure and luminescence properties of Er doped ZnO nanowires. Appl. Phys. Lett. 89, 221917–221919 (2006). doi:10.1063/1.2399340

    Article  Google Scholar 

  20. A.S. Pereira, M. Peres, M.J. Soares, E. Alves, A. Neves, T. Monteiro, T. Trindade, Synthesis, surface modification and optical properties of Tb3 + -doped ZnO nanocrystals. Nanotechnology 17(3), 834 (2006). doi:10.1088/0957-4484/17/3/037

    Article  Google Scholar 

  21. Y. Liu, Q. Yang, C. Xu, Single-narrow-band red upconversion fluorescence of ZnO nanocrystals codoped with Er and Yb and its achieving mechanism. J. Appl. Phys. 104, 064701–064705 (2008). doi:10.1063/1.2980326

    Article  Google Scholar 

  22. X. Wang, X. Kong, G. Shan, Y. Yu,Y. Sun, L. Feng, K. Chao, S. Lu, Y. Li, Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals. J. Phys. Chem. B. 108(48), 18408–18413 (2004). doi:10.1021/jp048021t

  23. Y. Bai, Y. Wang, K. Yang, X. Zhang, Y. Song, C.H. Wang, Enhanced upconverted photoluminescence in Er3 + and Yb3 + codoped ZnO nanocrystals with and without Li+ ions. Opt. Commun. 281(21), 5448–5454 (2008). doi:10.1016/j.optcom.2008.07.041

    Article  Google Scholar 

  24. J. Yang, H. Zhang, X. Wang, F. Qin, C. Wang, Optical properties of Er3+–Ag co-doped ZnO nanocrystals prepared by combustions method. J. Mater. Sci. Mater. Electron. 25, 3895–3900 (2014). doi:10.1007/s10854-014-2104-y

    Article  Google Scholar 

  25. N. Kichar, S. Bishnoi, S. Chawla, Introducing dual excitation and tunable dual emission in ZnO through selective lanthanide (Er3+/Ho3+) doping. RSC Adv. 4, 18811–18817 (2014). doi:10.1039/C4RA01248H

    Article  Google Scholar 

  26. A. Pawar, A. Jadhav, C.W. Kim, H.G. Cha, U. Pal, Y.S. Kang, Emission controlled dual emitting Eu-doped CaMgSi2O6 nanophosphors. J. Lumin. 157, 131–136 (2015). doi:10.1016/j.jlumin.2014.08.034

    Article  Google Scholar 

  27. K. Jayanthi, S. Chawla, K.N. Sood, M.S. Chhibara Singh, Dopant induced morphology changes in ZnO nanocrystals. Appl. Surf. Sci. 255(11), 5869–5875 (2009). doi:10.1016/j.apsusc.2009.01.032

    Article  Google Scholar 

  28. K. Jayanthi, S. Chawla, A. Joshi, Z.H. Khan, R.K. Kotnala, Fabrication of luminescent, magnetic hollow core nanospheres and nanotubes of Cr-Doped ZnO by inclusive coprecipitation method. J. Phys. Chem. C. 114, 18429–18434 (2010). doi:10.1021/jp107086h

  29. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943–945 (2001). doi:10.1063/1.1394173

    Article  Google Scholar 

  30. F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettineli, 980 nm excited upconversion in an Er-doped ZnO–TeO2 glass. Appl. Phys. Lett. 80, 1752–1754 (2002). doi:10.1063/1.1458073

    Article  Google Scholar 

  31. G.A. Kumar, M. Pokhrel, D.K. Sarda, Intense visible and near infrared upconversion in M2O2S:Er (M = Y, Gd, La) phosphor under 1550 nm excitation. Mater. Lett. 68, 395–398 (2012). doi:10.1016/j.matlet.2011.10.087

    Article  Google Scholar 

  32. H.L. Han, L.W. Yang, Y.X. Liu, Y.Y. Zhang, Q.B. Yang, Up-conversion luminescence switching in Er3 + -containing ZnO nanoparticles through Li + co-doping. Opt. Mater. 31, 338–341 (2008). doi:10.1016/j.optmat.2008.05.003

    Article  Google Scholar 

Download references

Acknowledgments

This present work was supported by the TAPSUN project under CSIR Solar Mission program of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santa Chawla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Khichar, N. & Chawla, S. Dual mode luminescence in rare earth (Er3+/Ho3+) doped ZnO nanoparticles fabricated by inclusive co precipitation technique. J Mater Sci: Mater Electron 26, 7174–7182 (2015). https://doi.org/10.1007/s10854-015-3342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3342-3

Keywords

Navigation