Skip to main content
Log in

Studies on multifunctional behaviour of Cr doped SrWO4 Compounds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal doped divalent tungstate compounds endowed with coalescence of optical and magnetic property forms a class of multifunctional materials and found importance in the field of magneto-optical and spintronics device applications. In the present work, pure and Cr doped SrWO4 compounds were synthesized by chemical precipitation method. Powder X-ray diffraction analysis reveals scheelite type tetragonal structure of all the compounds. The effect of doping on crystal symmetry and local structure of the compounds was investigated by Laser Raman spectroscopy studies. The micro sphere and poly-dispersed surface morphology of all the compounds were examined by scanning electron microscopy and transmission electron microscopy analysis. Further, the evidences for oxygen vacancy and oxidation states of elements present in the compounds were analyzed by X-ray photoelectron spectroscopy. The optical absorption spectra explicitly describe the distinctive shift in absorption edge and linear decrease in band gap values while increasing Cr concentrations in SrWO4 system. The presence of defective states and oxygen vacancy in Cr doped SrWO4 compounds were confirmed with multicolor PL emission spectra. Electron paramagnetic resonance spectra authenticates the inducement of paramagnetic center (Cr3+) on increasing the dopant concentration. The magnetization analysis demonstrates enhanced ferromagnetic behaviour of all the Cr doped compounds, whereas the pure SrWO4 compound exhibits frustrated ferromagnetic behaviour. The augmented ferromagnetic ordering in Cr doped compounds has been explained in terms of carrier-induced Ruderman–Kittel–Kasuya–Yosida interaction theory. The possible inducement of carrier mediated room temperature ferromagnetism in Cr doped SrWO4 explicit demonstrates a hopeful candidature for magneto- optical and spintronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Valant, T. Kolodiazhnyi, I. Arcon, F. Aguesse, A.K. Axelsson, N.M. Alford, The origin of magnetism in Mn doped SrTiO3. Adv. Funct. Mater. 22, 2114–2122 (2012)

    Article  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in Zinc- blended magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  Google Scholar 

  3. Y. Matsumoto, M. Murakami, Tomojishono, T. Hasegawa, T. Fukumra, M. Kawasaki, P. Ahmet, Toyohirochikyow, S.Y. Koshihara, H. Koinuma, Room temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001)

    Article  Google Scholar 

  4. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin- based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  5. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise non-magnetic oxides. Phys Rev B 72, 161306 (2006)

    Article  Google Scholar 

  6. Y.C. Chen, E. Goering, L. Jeurgens, Z. Wang, F. Phillip, J. Baier, T. Tietze, G. Schutz, Unexpected ferromagnetism in bulk ZnO. Appl. Phys. Lett. 103, 162405 (2013)

    Article  Google Scholar 

  7. J. Hu, Z. Zhang, M. Zhao, H. Qin, M. Jiang, Room temperature ferromagnetism in MgO crystalline powders. Appl. Phys. Lett. 93, 192503 (2008)

    Article  Google Scholar 

  8. J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Magnetism in Hafnium dioxide. Phys. Rev. B 72, 024450 (2005)

    Article  Google Scholar 

  9. B. Choudhury, A. Choudhury, Room temperature ferromagnetism in defective TiO2 nanoparticles: role of surface and grain boundary oxygen vacancies. J. Appl. Phys. 114, 203906–203907 (2013)

    Article  Google Scholar 

  10. N.H. Hong, J. Sakai, N. Poirot, V. Brize, Room temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B 73, 132404 (2006)

    Article  Google Scholar 

  11. A. Sundaresan, C.N.R. Rao, Implications and consequences of ferromagnetism universally exhibited by inorganic nanoparticles. Solid State Commun. 149, 1197–2000 (2009)

    Article  Google Scholar 

  12. D.A. Crandles, B.D. Roches, F.S. Razavi, A search for defect related ferromagnetism in SrTiO3. J. Appl. Phys. 108, 053908 (2010)

    Article  Google Scholar 

  13. N. Apostolova, A.T. Apostolov, S.G. Bahoosh, J.M. Wesselinowa, Origin of ferromagnetism in transition metal doped BaTiO3. J. Appl. Phys. 113, 203904 (2013)

    Article  Google Scholar 

  14. S. Ramakanth, K.C. James Raju, Charge transfer induced magnetism in Sol-gel derived nanocrystalline BaTiO3. Solid State Commun. 187, 59–63 (2014)

    Article  Google Scholar 

  15. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–175 (2005)

    Article  Google Scholar 

  16. R.A. Ruderman, C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954)

    Article  Google Scholar 

  17. L.S. Cavalcane, J.C. Sczancoski, N.C. Batista, E. Longo, J.A. Varela, M.O. Orlandi, Growth mechanism and photocatalytic properties of SrWO4 micro crystals synthesized by injection of ions into a hot aqueous solution. Adv. Powder Technol. 24, 344–353 (2013)

    Article  Google Scholar 

  18. Z.L. Wanga, K.W. Cheaha, H.L. Tama, M.L. Gong, Near-ultraviolet light excited deep blue-emitting phosphor for solid-state lighting. J. Alloys Compd. 482, 437–439 (2009)

    Article  Google Scholar 

  19. Z. Ju, R. Wei, X. Gao, W. Liu, C. Pang, Red phosphor SrWO4: Eu3+ for potential application in white LED. Opt. Mater. 33, 909–913 (2011)

    Article  Google Scholar 

  20. L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev, V.V. Osiko, N.M. Polozkov, SrWO4: Nd3+ new material for multifunctional lasers. Opt. Mater. 23, 439–442 (2003)

    Article  Google Scholar 

  21. G. Jia, C. Tu, J. Li, Z. Zhu, Z. You, Y. Wang, B. Wu, Optical spectroscopy of Yb3+ doped SrWO4 scheelite crystal. J. Alloys Compd 436, 341–344 (2007)

    Article  Google Scholar 

  22. J. Liao, B. Qiu, H. Wen, J. Chen, W. You, Hydrothermal synthesis and photoluminescence of SrWO4:Tb3+ novel green phosphor. Mater. Res. Bull. 44, 1863–1866 (2009)

    Article  Google Scholar 

  23. Y. Zheng, J. Lina, Q. Wang, Emissions and photocatalytic selectivity of SrWO4:Ln3+ (Eu3+, Tb3+, Sm3+ and Dy3+) prepared by a supersonic microwave co-assistance method. Photochem. Photobiol. Sci. 11, 1567 (2012)

    Article  Google Scholar 

  24. B. Xu, X. Cao, G. Wang, Y. Li, Y. Wang, J. Su, Controlled synthesis and novel luminescence properties of string SrWO4: Eu3+ nanobeans. Dalton Trans. 43, 11493–11501 (2014)

    Article  Google Scholar 

  25. J. Liao, B. Qiu, H. Wen, J. Chen, W. You, L. Liu, Synthesis process and luminescence properties of Tm3+ in AWO4 (A = Ca, Sr, Ba) blue phosphors. J. Alloys Compd. 487, 758–762 (2009)

    Article  Google Scholar 

  26. Z. Xia, F. Yang, Mixing frequency induces [WO4]2− generating blue luminescence. Opt Spectros. 116, 302–305 (2014)

    Article  Google Scholar 

  27. M. Nikl, P. Bohacek, E. Mihokova, M. Kobayashi, M. Ishii, Y. Usuki, V. Babin, A. Stolovich, S. Zazubovich, M. Bacci, Excitonic emission of scheelite tungstates AWO4 (A = Pb, Ca, Ba, Sr). J. Lumin. 87–89, 1136–1139 (2000)

    Article  Google Scholar 

  28. F. Zhang, Y. Yiu, M.C. Aronson, S.S. Wong, Exploring the room- temperature synthesis and properties of multifunctional doped tungstate nanorods. J. Phys. Chem. C 112, 14816–14824 (2008)

    Article  Google Scholar 

  29. X. Li, Z. Song, B. Qu, Shape controlled electrochemical synthesis of SrWO4 crystallite and their optical properties. Ceram. Int. 40, 1205–1208 (2014)

    Article  Google Scholar 

  30. N. Khobragade, E. Sinha, S.K. Routa, M. Kar, Structural, optical and microwave dielectric properties of Sr1−xCaxWO4 ceramics prepared by the solid state reaction route. Ceram. Int. 39, 9627–9635 (2013)

    Article  Google Scholar 

  31. T. Thongtem, S. Kaowphong, S. Thongtem, Influence of cetyltrimethylammonium bromide on the morphology of AWO4 (A = Ca, Sr) prepared by cyclic microwave irradiation. Appl. Surf. Sci. 254, 7765–7769 (2008)

    Article  Google Scholar 

  32. T. Thongtem, A. Phuruangrat, S. Thongtem, Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation. Curr. Appl. Phys. 8, 189–197 (2008)

    Article  Google Scholar 

  33. D. Chen, Z. Liu, S. Ouyang, J. Ye, Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties. J. Phys. Chem. C 115, 15778–15784 (2011)

    Article  Google Scholar 

  34. T. Thongtema, S. Kungwankunakorna, B. Kuntalueb, A. Phuruangratc, S. Thongtemc, Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature. J. Alloys Compd. 506, 475–481 (2010)

    Article  Google Scholar 

  35. J.C. Sczancoskia, L.S. Cavalcante, M.R. Joya, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, Synthesis, growth process and photoluminescence properties of SrWO4 powders. J. Colloid Inter. Sci. 330, 227–236 (2009)

  36. J. Lia, L. Liu, H. You, H. Huang, W. You, Hydrothermal preparation and luminescence property of MWO4:Sm3+ (M = Ca, Sr, Ba) red phosphors. Optik 123, 901–905 (2012)

    Article  Google Scholar 

  37. S. Wannapop, T. Thongtem, S. Thongtem, Characterization of SrWO4–PVA and SrWO4 spiders webs synthesized by electro spinning. Ceram. Int. 37, 3499–3507 (2011)

    Article  Google Scholar 

  38. A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals. J. Appl. Phys. 104, 083102–083107 (2008)

    Article  Google Scholar 

  39. K.S. Aneesh Kumar, R.N. Bhowmik, Micro structural characterization and magnetic property of Ni1.5Fe1.5O4 ferrite synthesized through co-precipitation route at different PH values. Mater. Chem. Phys. 146, 159–169 (2014)

  40. H. Yu, S. Ouyang, S. Yan, Z. Li, T. Yu, Z. Zou, Sol-gel hydrothermal synthesis of visible-light-driven Cr doped SrTiO3 for efficient hydrogen production. J. Mater. Chem. 21, 11347 (2011)

    Article  Google Scholar 

  41. M. Ashokkumar, S. Muthukumaran, Tuning of energy gap, microstructure, optical and structural properties of Cr doped Zn0.96Cu0.04O nanoparticles. Powder Technol. 258, 157–164 (2014)

    Article  Google Scholar 

  42. G. Ouyang, G.W. Yang, C.Q. Sun, W.G. Zhu, Nanoporous structures: smaller is stronger. Small 4, 1359–1362 (2008)

    Article  Google Scholar 

  43. Z. Zhu, A. Zhang, G. Ouyang, G. Yang, Band gap tunability in semiconductor nano crystals by strain: size and temperature effect. J. Phys. Chem. C 115, 6462–6466 (2011)

    Article  Google Scholar 

  44. J. Yu, L. Qi, B. Cheng, X. Zhao, Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres. J. Hazard. Mater. 160, 621–628 (2008)

    Article  Google Scholar 

  45. M. Mancheva, R. Iordanova, Y. Dimitriev, Mechanochemical synthesis of nanocrystalline ZnWO4 at room temperature. J. Alloys Compd. 509, 15–20 (2011)

    Article  Google Scholar 

  46. Z.C. Ling, H.R. Xia, D.G. Ran, F.Q. Liu, S.Q. Sun, J.D. Fan, H.J. Zhang, J.Y. Wang, L.L. Yu, Lattice vibration spectra and thermal properties of SrWO4 single crystal. Chem. Phys. Lett. 426, 85–90 (2006)

    Article  Google Scholar 

  47. T. Thongtem, A. Phuruangrat, S. Thongtem, Characterization of MeWO4 (Me = Ba, Sr and Ca) nano crystallines prepared by sonochemical method. Appl. Surf. Sci. 254, 7581–7585 (2008)

    Article  Google Scholar 

  48. M. Muralidharan, V. Anbarasu, A. Elayaperumal, K. Sivakumar, Carrier induced ferromagnetism in Yb doped SrTiO3 system. J. Mater. Sci.: Mater. Electron. 25, 4078–4087 (2014)

    Google Scholar 

  49. K. Kamaraj, V. Karpakam, S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari, Synthesis of tungstate doped polyaniline and its usefulness in corrosion protective coatings. Electrochim. Acta 56, 9262–9268 (2011)

    Article  Google Scholar 

  50. B.P. Payne. M.C. Biesinger, N.S. McIntyre, X ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces. J. Electron. Spectrosc. Relat Phenom. 18, 29–37 (2011)

  51. J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)

    Article  Google Scholar 

  52. H. Feng, Y. Yang, X. Wing, Microwave radiation heating synthesis and luminescence of SrWO4 and SrWO4:xEu3+ powders. Ceram. Int. 40, 10115–10118 (2014)

    Article  Google Scholar 

  53. B.S. Barros, A.C. de Lima, Z.R. da Silva, D.M.A. Melo, S. Alves-Jr, Synthesis and photoluminescent behavior of Eu3+ doped alkaline-earth tungstates. J. Phys. Chem. Solids 73, 635–640 (2012)

    Article  Google Scholar 

  54. H. Li, X.Y. Kuang, A.J. Mao, Z.H. Wang, Investigations of defect structure and EPR parameters for tetragonal Nd3+centers in AWO4 (A¼Ca, Sr, Pb) crystals by superposition model analysis. Solid State Commun. 189, 47–51 (2014)

    Article  Google Scholar 

  55. I. Bykov, M. Makarova, V. Trepakov, A. Dejneka, L. Yurchenko, A. Jager, L. Jastrabik, Intrinsic and impurity defects in chromium-doped SrTiO3 nanopowders: EPR and NMR study. Phys. Status Solid. B 250, 821–824 (2013)

    Article  Google Scholar 

  56. D.V. Azamat, A. Dejneka, J. Lancock, V.A. Trepakov, L. Jastrabik, Pulse electron paramagnetic resonance of Cr3+ centers in SrTiO3, J. Appl. Phys. 113, 174106–1741066 (2013)

  57. Y. Su, J. Zhang, Z. Feng, L. Li, B. Li, Y. Zhou, Z. Chen, S. Cao, Magnetization reversal and Yb3+/Cr3+ spin ordering at low temperature for perovskite YbCrO3 ceramics. J. Appl. Phys. 108, 013905 (2010)

    Article  Google Scholar 

  58. K. Yoshii, Magnetization reversal in TmCrO3. Mater. Res. Bull. 47, 3243–3248 (2012)

    Article  Google Scholar 

  59. J. Inba, T. Katsufuji, Large magnetoresistance in spin and carrier doped SrTiO3. Phys. Rev. B 72, 052408 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology Madras (IITM), for providing SEM analysis, and Ms. J. Sridevi, Chemical Physics Lab, CLRI, Chennai, for EPR analysis.

Conflict of interest

The authors of this manuscript certify that we have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muralidharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralidharan, M., Anbarasu, V., Elaya Perumal, A. et al. Studies on multifunctional behaviour of Cr doped SrWO4 Compounds. J Mater Sci: Mater Electron 26, 6926–6938 (2015). https://doi.org/10.1007/s10854-015-3311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3311-x

Keywords

Navigation